ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
Scientific Visualization
Issue Year: 2013
Quarter: 1
Volume: 5
Number: 1
Pages: 26 - 37
Article Name: DESIGN OF PROGRAM TOOL BURGERS2 FOR HYBRID FINITE DIFERENCE SCHEMES OPTIMIZATION AND VISUALIZATION
Authors: A. Bondarev (Russian Federation), A. Bondarenko (Russian Federation), V. Galaktionov (Russian Federation), T. Mihailova (Russian Federation), I. Ryzhova (Russian Federation)
Address: A. Bondarev
bond@keldysh.ru
Keldysh Institute of Applied Mathematics RAS, Moscow, Russian Federation
 
A. Bondarenko
Keldysh Institute of Applied Mathematics RAS, Moscow, Russian Federation
 
V. Galaktionov
vlgal@gin.keldysh.ru
Keldysh Institute of Applied Mathematics RAS, Moscow, Russian Federation
 
T. Mihailova
Keldysh Institute of Applied Mathematics RAS, Moscow, Russian Federation
 
I. Ryzhova
Keldysh Institute of Applied Mathematics RAS, Moscow, Russian Federation
Abstract: The paper contains the description of developed program tool Burgers2. This program tool is intended for tuning and optimization of computational properties for hybrid finite-difference schemes applied to Burgers equation. One-dimensional model Burgers equation describes propagation of disturbances for dissipative medium. The equation has exact solution, so it is widely used for tuning-up of computational tools. Described program tool is based on combining of optimization problem solution and visual data presentation. Visual presentations of maximal error surface and error function are implemented as program tool features. User is able to visualize error function distribution for any chosen moment of time. These visual presentations allow analyzing and control computational properties of hybrid finite-difference schemes under consideration. Users have possibility of creating hybrid finite-difference schemes and analyzing computational properties for chosen grid template provided by program tool. Visual presentation of optimization problem solution allows finding of suitable weight coefficients for hybrid finite-difference scheme under consideration. The examples of test calculations are included.
Language: Russian