ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2025, volume 17, number 2, pages 147 - 159, DOI: 10.26583/sv.17.2.11

Reconstruction of Object Inhomogeneity Parameters by Near-Field Measurements in Microwave Tomography Using Neural Networks

Authors: A.V. Medvedev1, M.Yu. Medvedik2

Penza State University, Penza, Russia

1 ORCID: 0009-0004-1176-9517, mdl-studio@yandex.ru

2 ORCID: 0000-0003-4066-1818, _medv@mail.ru

 

Abstract

The article proposes a method for reconstruction inhomogeneity parameters based on the results of near-field measurements in medical diagnostics. This is a classical inverse problem arising in various fields of science and technology. At the first stage, the problem of wave propagation inside an object is considered. A rigorous description of the problem is given both as a boundary value problem and as a volume integral equation. Next, using the numerical solution of this equation, the field values outside the body in the near zone are determined. At the second stage, using the obtained near-field values using a two-step algorithm, a search for inhomogeneities occurs. A specially trained neural network filters the values obtained before and after the two-step algorithm, thereby improving the quality of images visualizing inhomogeneities. Graphic illustrations of the original and restored values of inhomogeneities for the objects under consideration are presented. An experiment was conducted demonstrating the features of restoring object parameters using neural networks. The results show the effectiveness of filtering the calculated data by the autoencoder. A software package for determining the parameters of inhomogeneities inside the object is proposed and implemented.

 

Keywords: numerical methods, integral equation, Helmholtz equation, inverse problem, neural network.