ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2024, volume 16, number 2, pages 106 - 115, DOI: 10.26583/sv.16.2.09

Application of Modern Object Tracking Technologies to the Task of Aortography Key Point Detection in Transcatheter Aortic Valve Implantation

Authors: V.V. Laptev1, N.A. Kochergin2

Scientific Research Institute of Complex Problems of Cardiovascular Diseases, Kemerovo, Russia

1 ORCID: 0000-0001-8639-8889, lptwlad1@gmail.com

2 ORCID: 0000-0002-1534-264X, nikotwin@mail.ru

 

Abstract

Object detection, as one of the most fundamental and challenging problems in computer vision, has attracted much attention in recent years. Over the past two decades, we have witnessed the rapid technological evolution of object detection and its profound impact on the whole field of computer vision. In this paper, aortography key point detection approaches for transcatheter aortic valve implantation based on machine learning tools are discussed. The paper provides a description and analytical comparison of such popular methods as "object detection", "pose estimation". As a result of this study, a visual assessment system is proposed to facilitate the performance of the intervention procedure. The final accuracy of the proposed system reaches 79.3% with an analysis speed of 12 ms per image.

 

Keywords: machine learning, object detection, tracking, key points.