ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2019, volume 11, number 5, pages 126 - 141, DOI: 10.26583/sv.11.5.11

Computer visualization of the identify industrial clusters task using GVMap

Authors: E.V. Kozonogova1, D.S. Kurushin2, J.V. Dubrovskaya3

Perm National Research Polytechnic University

1 ORCID: 0000-0001-9573-7336, elenaa.semenovaa@gmail.com

2 ORCID: 0000-0003-4798-7423, dan973@yandex.ru

3 ORCID: 0000-0002-3205-9264, uliadubrov@mail.ru

 

Abstract

On the basis of systematization ways of reflection the interactions of cluster relations subjects the technique of visualization of identification industrial clusters is presented. As a visualization tool used GVmap, implemented in the software "Graphviz". Identification of clusters at the macro level is based on the symmetric table "input-output" in the context of 86 economic activities. The input parameters were data in the form of a graph and information about clustering in the data. Economic activities are selected as the vertices of the graph. The connections between the vertices of the graph (edge) were constructed on the basis of the matrix of significant supplier-consumer relations obtained by the Maximum method. Clusters of industries are calculated using the method of Zamanski.

Tool GVMap clustered the data displayed geographic-like maps to the image that not only makes it easier to read the graph connectivity of economic sectors, much as you would to shape an adequate development strategy for enterprises to cluster and for the areas of their localization.

To automate the process of industrial clusters identification and their visualization, a software tool in Python was created.

The reported study was funded by RFBR according to the research project ¹ 19-010-00562.

 

Keywords: GVMap, data visualization, identification of clusters, the method of S. Zamansky, the method of maximum, geographic-like maps.