ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2018, volume 10, number 1, pages 69 - 76, DOI: 10.26583/sv.10.1.05

Data visualization and representation in ATLAS BigPanDA monitoring

Authors: S.PadolskiA,1, T.KorchuganovaB,2, T.WenausA,3, M.GrigorievaB,C,4, A.AlexeevB,5, M.TitovC,6, À.KlimentovA,7

A Brookhaven National Laboratory, Upton, NY, USA

B Tomsk Polytechnic University, Tomsk, Russia

C National Research Center “Kurchatov Institute”, Moscow, Russia

1 ORCID: 0000-0002-6795-7670, spadolski@bnl.gov

2 ORCID: 0000-0001-5792-8182, tatiana.korchuganova@cern.ch

3 ORCID: 0000-0002-8678-893X, wenaus@gmail.com

4 ORCID: 0000-0002-8851-2187, magsend@gmail.com

5 ORCID: 0000-0001-7025-432X, frt@tpu.ru

6 ORCID: 0000-0003-2357-7382, mikhail.titov@cern.ch

7 ORCID: 0000-0003-2748-4829, Alexei.Klimentov@cern.ch

 

Abstract

A rising demand on visualization of high-volume data we observe currently is an immediate follow up to the technological ability to collect, store and handle Big Data drastically increased in the recent years. A lot of contemporary development activities both open source and proprietary are focused on indexing, plotting and navigating over historical and scattered data. In particular GitHub reports 7,449 data visualization projects registered in the 2017 while only 3,183 for 2015. Many of such developments form a technological stack which delivers advanced data visualization functionality almost out of the box but in the same time complex data aggregation, analysis and navigation still requires custom solutions.

In this paper we describe author’s experience of building BigPanDA monitoring which provides interface to the PanDA jobs management system used in CERN Particle Physics experiments such as ATLAS at LHC and COMPASS at SPS. We present principles of design of user interfaces and data visualization which provides compact, user oriented access to the data stored in hundreds millions of rows scattered in tenths of database tables and another sources. The system operates in 24x7 mode and serves different needs of more than thousand users.

 

Keywords: monitoring, CERN, ATLAS, visualization, interactive visualization.