ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2023, volume 15, number 1, pages 112 - 126, DOI: 10.26583/sv.15.1.10

Visualization Analysis of the Results of Continuum-Atomistic Modeling of a Coulomb Explosion in Metals Under the Influence of Ultrashort (fs, ps) Laser Action

Authors: V.I.  Mazhukin1, A.V.  Shapranov2, M.M.  Demin3, O.N.  Koroleva4, A.V.  Mazhukin5

Keldysh Institute of Applied Mathematics RAS

1 ORCID: 0000-0001-5590-3731, vim@modhef.ru

2 ORCID: 0000-0001-8851-2286, ashapranov@modhef.ru

3 ORCID: 0000-0001-6662-7699, mdemin@mail.ru

4 ORCID: 0000-0001-5292-1336, koroleva.on@mail.ru

5 ORCID: 0000-0001-7538-6460, specimen@mail.ru

 

Abstract

A continuum-atomistic model that describes nonequilibrium thermal, hydrodynamic, and electronic processes in metals that occur under the action of ultrashort (fs, ps) laser radiation has been developed. A detailed study of two mechanisms of ultrashort laser ablation of Cu was carried out: fast - Coulomb, determined by Coulomb forces, and slow - thermal, realized in the unloading wave after the end of the laser pulse. Modeling showed that the excess nonequilibrium pressure of collectivized electrons plays a leading role in the formation of a strong electric field at the metal-vacuum interface. This effect can be taken as the basis for the Coulomb explosion in metals. The main feature of the work is the widespread use of modern visualization tools for processing and presenting simulation results.

 

Keywords: ultrashort laser ablation, Coulomb explosion in metal, continuum-atomistic model, dynamic imaging, electric double layer.