ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2025, volume 17, number 5, pages 10 - 18, DOI: 10.26583/sv.17.5.02

Principles of Organization of Continuity in Discrete Geometrized Space

Authors: A.V. Tolok1, N.B. Tolok2

V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

1 ORCID: 0000-0002-7257-9029, tolok_61@mail.ru

2 ORCID: 0000-0002-5511-4852, nat_tolok@mail.ru

 

Abstract

The paper considers the principle of analytical transition to a local function at points on the domain of an implicit function defining a geometric object. Herewith, a transition to partial derivatives is provided to obtain a general form of an implicit local function describing the local geometry for any single point in the object domain. On the analogy of R-functional modeling, a mathematical apparatus for union/intersecting local geometric characteristics of a local function at a single point is provided to construct a discrete region of a complex geometric object.

An example of the intersection of two functions on a defined domain of arguments demonstrates the obtaining of a discretely geometrized three-dimensional manifold for describing a cylinder.

The proposed work is the continued development of method of the Functional Voxel Modeling which offers an analytical structure for the discrete-continuous description of complex geometric objects instead of the means of linear approximation currently used in this method.

 

Keywords: domain of definition of the function, Functional Voxel Method (FV-method), Functional Voxel modeling, partial derivatives, local geometric characteristics, local function, R-functional modeling, discrete-continuous domain.