ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2022, volume 14, number 4, pages 110 - 120, DOI: 10.26583/sv.14.4.10

Visual Interpretation of Russian Static Vector Space

Authors: O.A. Serikov1, E.S. Klyshinsky2, V.A. Ganeeva3

National Research University “Higher School of Economics”, Myasnitskaya str. 20, 101000, Russia

1 ORCID: 0000-0002-3746-2642, srkvoa@gmail.com

2 ORCID: 0000-0002-4020-488X, eklyshinsky@hse.ru

3 ORCID: 0000-0002-9569-9197, vaganeeva@edu.hse.ru

 

Abstract

The vector analogy task states that it is possible to find a vector translation which changes a selected semantic feature of a word and connects vector representations of two words. It is well known that the accuracy of such a translation is not always high. In this paper, we introduce a new method of visual representation of static vector embedding space which aims to investigate semantic properties of such a space. The main idea of the method is usage of LSA method for separation of a vector space into semantically homogeneous parts. We also use topic word lists embedded into a static vector space for the sake of visualization of results of such separation. During our experiments, we found out that it is possible to interpret not only small groups of vectors but also the global structure of the whole space. The semantic differences among selected global groups depend on the semantic and pragmatic features of texts used for training the vector model — their genre, style, source, lexis etc. The introduced method can be used for construction of a hierarchical model of a vector space.

 

Keywords: Static vector space, visual interpretation, LSA.