ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2020, volume 12, number 5, pages 13 - 24, DOI: 10.26583/sv.12.5.02

Analysis of large visualization datasets for thermographic studies in fluid dynamics

Authors: I.A. Znamenskaya1, A.M. Shagiyanova2, E.Yu. Koroteeva3, M.I. Muratov4, P.A. Ryazanov5

Lomonosov Moscow State University

1 ORCID: 0000-0001-6362-9496, znamen@phys.msu.ru

2 ORCID: 0000-0002-2216-4503, shagiyanova@physics.msu.ru

3 ORCID: 0000-0002-1705-5142, koroteeva@physics.msu.ru

4 ORCID: 0000-0002-6545-5829, muratov583@gmail.com

5 ORCID: 0000-0002-2003-6225, pa.ryazanov@physics.msu.ru

 

Abstract

This paper reports on the visualization of non-stationary thermal fields for two experimental problems with different temporal and spatial scales using high-resolution infrared (IR) thermography. We study: 1. the near-wall region of the impinging non-isothermal liquid jet and 2. the heat fluxes from the shock-tube walls during the passage of the shock wave. These are the high-speed fluid dynamic processes, and their study involves obtaining and analyzing large amounts of visual data.

For the non-isothermal mixing of an impinging water jet, the flow is analyzed in the region near an IR-transparent wall. The thermograms of non-isothermal vortex flow in the near-wall region are presented. The energy spectra of temperature pulsations are computed for various regions of the wall-jet flow. In the gas-dynamic experiment, the thermal response of the shock tube wall to the shock wave propagation is studied. The infrared imaging of surfaces with different thermal conductivity and emissivity is conducted.

The approaches are discussed for optimizing the registration and analysis of large thermographic datasets.

 

Keywords: infrared thermography, post-processing, thermal radiation.