ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2020, volume 12, number 1, pages 103 - 111, DOI: 10.26583/sv.12.1.09

Modeling the development of Kelvin-Helmholtz instability in problems of high energy density physics

Authors: N.V.  Zmitrenko1,A, P.A.  Kuchugov2,A, M.E.  Ladonkina3,A, V.F.  Tishkin4,A

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

1 ORCID: 0000-0003-0973-4388, zmitrenko@imamod.ru

2 ORCID: 0000-0003-3240-2963, pkuchugov@gmail.com

3 ORCID: 0000-0001-7596-1672, ladonkina@imamod.ru

4 ORCID: 0000-0001-7295-7002, v.f.tishkin@mail.ru

 

Abstract

With the construction of powerful laser facilities, research in high energy density physics has received a new push of the development due to the possibility of making experiments. One of the main directions during many years remains the study of the development of initial perturbations under the various hydrodynamic instabilities. Due to the development of modern diagnostic methods in the last decade, these phenomena were experimentally observed under conditions of high energy densities, which made it possible to verify the available numerical codes and also to obtain new data.

The results of mathematical modeling of the development of Kelvin-Helmholtz instability in the conditions of irradiation of flat targets using an OMEGA laser facility are presented in this work. The vortex growth rate is compared with available experimental data. Taking into account the simplifications made in the numerical formulation of the problem, the various data are in satisfactory agreement with each other. The visualization of the flow made it possible to fully analyze its structure, determine the sizes of the characteristic vortices, and also reveal the differences between the 3D and 2D variants associated with the relaxation of the flow in transverse directions. The implementation of the visualization module is based on the use of VTK XML parallel format for storing data for analysis.

 

Keywords: Kelvin-Helmholtz instability, flow visualization, high energy density physics, mathematical modeling.