Научная визуализация

Scientific Visualization

Электронный журнал открытого доступа

Национальный Исследовательский Ядерный Университет "МИФИ"

      ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Научная визуализация, 2024, том 16, номер 2, страницы 11 - 22, DOI: 10.26583/sv.16.2.02

Shadow Detection and Elimination for Robot and Machine Vision Applications

Авторы: Luma Issa Abdul-Kreem1,A, Hussam k. Abdul-Ameer2,B

A Control and Systems Engineering Departament, University of Technology, Baghdad, Iraq

B Biomedical Engineering Departament, University of Baghdad, Al-Khwarizmi College of Engineering, Baghdad, Iraq

1 ORCID: 0000-0002-6161-2428, luma.i.abdulkreem@uotechnology.edu.iq

2 ORCID: 0000-0001-6799-3201, hussam@kecbu.uobaghdad.edu.iq

 

Аннотация

Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensities. In the third stage, the boundary of the target object is extracted, and in the fourth and fifth stages, respectively, the region of interest (ROI) is highlighted and reconstructed. Our model was tested and evaluated using realistic scenarios which include outdoor and indoor scenes. The results reflect the ability of our approach to detect and remove shadows and reconstruct a shadow free image with a small error of approximately 6%.

 

Ключевые слова: Shadow Distribution Visualization, Spatial Analysis of Shadows, Filtered Data Visualization, Data Normalization, Shadow Removal, Machine and Robot Vision.