
Scientific Visualization, 2024, volume 16, number 4, pages 82 - 101, DOI: 10.26583/sv.16.4.08

An Approach to Developing Data Visualization Tools Based
on Domain Specific Modeling

A. D. Dzheiranian1,A, I. D. Ermakov2,B, K. A. Proskuryakov3,A, L. N. Lyadova4,A

A National Research University – Higher School of Economics (HSE University),

Perm, Russia
B Perm State University (PSU), Perm, Russia

1 ORCID: 0009-0000-8916-2855, addzheyranyan@edu.hse.ru

2 ORCID: 0000-0003-2897-7158, john.ermakov27@gmail.com
3 ORCID: 0009-0001-1678-5653, k.proskuryakov22@gmail.com

4 ORCID: 0000-0001-5643-747X, LNLyadova@gmail.com

Abstract
An approach to the development of data visualization tools is described that provides the

ability to customize to the needs of users and the specifics of the domains in which they work,
based on domain-specific modeling. The results of the analysis of data visualization tools and
the possibility of customizing them to subject area based on the needs of users and the tasks
they solve are briefly presented. It is shown that existing tools require programming skills
from users to customize the data visualization format or to develop new visualization models.
It is proposed to use domain-specific modeling tools (language toolkits) to create domain-
specific languages (DSL) designed to develop new data visualization models that reflect the
specifics of the tasks solved by users. The use of the developed tools does not require users to
have professional knowledge of programming languages. The architecture of a knowledge-
driven software system is described. The core of the system is a multifaceted ontology, which
includes descriptions of languages and domains, as well as rules for generating new languages
and transforming constructed models. Languages are designed to describe different classes of
diagrams. The system includes tools for automating the creation of new DSLs by mapping the
domain ontology onto the metamodel of the base language according to user-specified rules,
which are also stored in the ontology. The classification of different types of diagrams forms
the basis for creating an ontology of data visualization languages. An example of a basic lan-
guage for creating diagrams is described. The ability to customize the DSL and transform vis-
ualization models developed with its help and generate code that implements the model is
demonstrated. It is shown how interactive visualization can be created on the basis of the de-
veloped metamodels, extending the possibilities of visualizing large structured data.

Keywords: data visualization, interactive visualization, domain-specific modeling, do-

main-specific language, metamodeling, grammar, multifaceted ontology, model transfor-
mation.

1. Introduction
Visualization tools have become widespread in various industries, business functions and

IT disciplines, both in the private and public sectors. They are actively used in such areas as
energy, cartography, medicine, finance, sociology and many others. In this context, data visu-
alization serves as a method of data analysis. The efficiency of experts and analysts is largely
determined by the quality of data visualization and the results of their analysis.

Numerous studies have been devoted to the issues of data visualization quality.

Unreadable and confusing visualizations spread misinformation, mislead, and reduce the
effectiveness of researchers, the quality of management decisions, etc. The authors of the pa-
per [1] emphasize the scale of the problem by referring to resources that collect tens of thou-
sands of users criticizing graphs and charts (reddit.com/r/dataisugly) made with obvious er-
rors. Existing data visualization methods allow building mostly simple and overly generalized
visualizations, which, in addition, often lack systematicity and universality. The lack of proper
tools for assessing the quality of data visualization further exacerbates the problem. The arti-
cle proposes VisQualdex, a systematic set of guidelines for static data visualization. The cate-
gorization is based on the theory of graphic grammars. Dozens of criteria are proposed to
identify various errors (errors of different categories and scales). The proposed set of guide-
lines has been peer-reviewed and tested by experts in the fields of data visualization, data sci-
ence, graphic design, information technology, and computer science. The implementation of
the recommendations is available as a web server, developed as a single-page application in
JavaScript using the principles of Vue.js and Material Design.

Researchers pay special attention to the issues of using visualization tools in education.
The authors of the paper [2] show that infographics are important for the presentation and

transmission of complex information, in particular, they discuss the impact of visualization
on the results of the educational process organized in interaction with infographics and mul-
timedia. The results of the study showed that the use of infographics and visual training is an
effective approach to organizing the educational process.

The purpose of the study, the results of which are presented in [3], is to study the theoreti-
cal and practical aspects of knowledge visualization in the educational process. The authors
compare different models of knowledge representation, consider the principles of visualiza-
tion and the structure of visualization competencies, including analytical, algorithmic, and
other components. Using various methods of modeling, visualization and systematization of
data, the authors conclude that visualization of knowledge requires taking into account the
features of the educational process in the context of didactic principles, etc. The formation of
visualization skills in the course of educational activities is a difficult task, depending on
many factors. These skills are the basic components of building visualization competence.
Solving the knowledge visualization problem requires the use of modern innovative technolo-
gies covering basic digital technologies, big data technologies, multidimensional data mining
methods, etc.

The software tools that are used in the educational process and affect the formation of pro-
fessional competencies among students are discussed in the paper [4]. The goal of the project
is to develop a technology for creating educational VR content that should increase the effi-
ciency of learning using many different software environments used in the process of forming
the final virtual space.

The authors of the paper [5] describe an approach to understanding the idea of the graph
models cognitive clarity. They present a conceptual scheme for structuring concepts related to
cognitive clarity. According to this scheme, they distinguish the factors of the formation of
cognitive clarity. Cognitive clarity is defined as a set of intrinsic characteristics of the visual
image of a model, the effects of which are manifested by visual analysis of the model. The au-
thors conclude that the factors of formation of cognitive clarity are of the greatest interest
(due to their constructiveness). The article provides a detailed diagram of the approach to
understanding the idea of cognitive clarity and discusses the individual components of this
scheme. A generalized algorithm is proposed for preparing and conducting an experiment to
solve a certain problem of visual analysis by an analyst with the participation of factors, the
influence of which is hypothesized before the experiment. As a result, the effect of changing
the level of cognitive clarity is assessed and the nature of dependence on given factors or its
absence is revealed, which makes it possible to accept, reject or clarify the initial hypothesis.

The effectiveness of data visualization is discussed in articles [6, 7]. The perception of
graphic information is associated with certain visual cognitive processes, based on the study

of which, the authors give general recommendations for creating effective scientific visualiza-
tions.

The needs of end users (data analysts) include the need to create custom chart types for
specific tasks and subject areas, since basic chart types with basic geometry can limit infor-
mation transfer [1] and lead to inefficient visualization, which, in turn, can lead to errors in
decision making [8].

Users need to create visualizations tailored to the specifics of the tasks and subject areas
they solve. Thus, it is necessary to incorporate custom visualization specifications into data
visualization tools. These specifications define how users can specify their requirements for
creating visualizations [9].

Static visualization may not be effective for analyzing large data sets, so there is a need to
quickly and easily create interactive visualizations [10]. These methods should be able to
work with different types and data sources [9].

Researchers [8, 11] note a limited degree of flexibility in manipulating chart elements and a
lack of focus on the user's real needs for existing data visualization tools. Often this setting
requires the use of the programming language [10]. Most users don’t have deep programming
knowledge and skills. Therefore, there is a need to develop no-code or low-code platforms for
creating customized visualization models.

The authors of the paper [12] discuss various techniques and tools for data visualization,
offer their classification, formulate the problems faced by users, and new opportunities that
should be provided by promising visualization tools. In particular, it is noted that one of the
key tasks is to develop methods for automating data visualization, ensuring efficient and in-
teractive visualization, regardless of the size and complexity of the data. The implementation
of these methods facilitates research in areas with intensive use of data [13], allows continu-
ous monitoring and analysis of this data, visualization of the analysis results.

Automatic visual analysis involves finding, cleaning, integrating, and visualizing data. On-
tologies are widely used to solve these problems.

In the papers [13, 14] authors propose to use ontologies as part of architecture, as the core
of an analytical knowledge-driven platform. In this case, a multifaceted ontology is used,
which allows to implement semantic searching and indexing data, avoid duplication of data,
to expand the functionality of information and analytical systems, to create domain specific
languages (DSLs) and research models and scenarios with these DSLs, as well as automatical-
ly interpret data and data analysis results to provide them for different groups of users ac-
cording to their familiar terminology.

The available data visualization toolkits can be divided into the following groups:
1) spreadsheets (e.g., Excel, Google Sheets),
2) analytical platforms (e.g., Microsoft Power BI, Tableau),
3) chart editors (e.g., Miro, ChartBlocks).
The standard tools of the first two groups are limited to basic chart types and visual effects

customization options. The tools of the third group allow to create customized visualizations,
edit the location of elements, but do not provide the ability to customize to user's domains.

The use of general-purpose programming languages (for example, Python libraries for data
visualization: Matplotlib, Seaborn, Plotly, etc.) contributes to the creation of expressive visu-
alizations for solving specific problems but requires programming skills from chart develop-
ers. Also, the created solution cannot be reused for other visualizations, and it is a “black box”
where it is not clear how the visualization is configured [10].

Visualization reflecting the specifics of the subject area can greatly contribute to a better
understanding of the presented data, the results of their analysis, formal models. The creation
of such tools can be based on Domain Specific Modeling (DSM), which involves the creation
and use of Domain Specific Languages (DSLs) to develop new data visualization models, cus-
tomized variants of diagrams.

There are few publications on creating DSL for data visualization. Based on the overview,
most DSLs focus on a small set of standard charts (pie charts, histograms, etc.) or visualiza-

tion of specific data types (for example, geospatial, etc.). They differ in levels of abstraction,
usage contexts, and implementation capabilities.

Article [15] describes the process of developing DSL for building and transforming data
visualization methods. This DSL is built into the Haskell programming language. Authors
provide several levels of abstraction: at the lowest level, the user can create an element con-
sisting of a specific primitive form and a set of visual parameters. It is important to note that
the basic constructions of the language are limited to histogram and pie chart. However, us-
ers can arrange their elements differently to create more complex renderings.

The variation model of visualization implemented using DSL built into the PureScript pro-
gramming language is presented in paper [16]. This DSL allows you to create variational visu-
alizations and their combinations, for example, overlapping alternative histograms. The arti-
cle also discusses methods for representing variation and adding variation to visualizations
through DSL. Developed tools provide creation, management, navigation and rendering of
various visualizations.

The researchers in the paper [17] present a DSL focused on data geovisualizations. They
use a compiler to facilitate automatic creation of visualizations and data preprocessing. Their
system uses multi-core parallelism to speed up data preprocessing.

An approach that helps the user create domain-specific visualizations of models using CSP
(Communicating Sequential Processes) is suggested in paper [18]. CSP is a formal language
primarily used to describe parallel and distributed systems. The authors have successfully
created various visualizations of CSP models demonstrating the capabilities of the proposed
approach. However, these tools are not universal, the capabilities of the language limit its use.

These tools enable users to develop new types of charts. But there are no customization op-
tions for various subject areas, or these options are limited. In addition, professional pro-
gramming skills are required from users, which also limits the use of the described tools.

A language-oriented approach [19] (in this case it is DSM-based approach) to the imple-
mentation of data visualization tools can become the main one in the development of a data
visualization system with the ability to customize to the needs of users.

Creating new visualization options customized for specific domains and user tasks is divid-
ed into two stages:

1. Developing a domain-specific language (DSL) that reflects user needs.
2. Building customized data visualization based on the created DSL.
To create DSL, DSM platforms (language toolkits) are used, which automate the develop-

ment of model editors and their transformation tools, code generators. The task of reducing
the complexity of creating the languages themselves and automating their development is be-
coming urgent.

Thus, end users face two questions when solving data visualization tasks:
1. How to create or customize visualizations according to the user's needs?
2. How to reduce programming competency requirements when using visualization tools

that allow customization?
To expand the capabilities of visualization tools, a language-oriented approach is pro-

posed, the use of knowledge-driven language tools that allow automating the creation of do-
main specific languages based on the use of a multifaceted ontology [19, 20, 21, 22].

2. Generalized Structure of Knowledge-Driven Language
Toolkits

The purpose of the presented project is to develop and approve an approach to creating
tools for effective data visualization, considering the recommendations proposed in [6, 7],
which provide the ability to create custom types of diagrams for specific tasks and domains,
as well as the ability to create interactive visualizations [10].

The peculiarity of requirements lies in the need to configure visualization for the specifics
of domains and tasks solved by users, or to develop new types of diagrams. This result can be

achieved through combining different types of diagrams and interactivity, etc. These re-
quirements should be considered when creating tools for developing visualization models
(graphs, schemes, diagrams).

The basis for the implementation of data visualization tools proposed in this paper is a
knowledge-driven DSM platform that provides the ability to create hierarchies of domain-
specific languages [20, 21, 22] designed to create new types of models (new graphic nota-
tions) that meet the needs of users. Reducing the complexity of developing new DSLs is
achieved using basic languages, their addition and combination in accordance with the rules
determined by users. Visualization models built using the created DSL can be translated into
program code that implements efficient user visualization of data, based on the specified
transformation rules of the “Model–Text” type.

The main functional requirements for data visualization tools are shown in the format of
the Use Case diagram in Figure 1. A domain expert must develop a domain ontology in which
users (visualization developers) solve their problems. The DSM expert is responsible for de-
veloping metamodels of basic languages (in this case, languages for developing basic types of
diagrams that can be used as the basis for creating new DSLs that implement user needs), as
well as for developing rules for generating new languages that reflect the specifics of the do-
mains in which users work – rules for mapping the ontology of the subject area to the meta-
model of the selected base language. When developing a visualization, the user can use the
existing DSL by configuring parameters or user can develop a new DSL based on existing lan-
guage. Generating code in a programming language using the built visualization model allows
you to create interactive visualizations controlled by events, combine different types of visual-
izations when working with complex data structures obtained from different sources. Trans-
formation (code generation) rules are developed by a DSM expert.

Figure 1: Main functions of DSM-based visualization modeling tools

The core of the language toolkits with which the described functions should be implement-

ed is a multifaceted ontology [20, 21, 22]. It contains domain descriptions and includes an
ontology of languages, where visual languages (languages for creating diagrams, etc.) are de-
scribed using metamodels, and text languages grammars are represented as Wirth diagrams.
Rules for generation visual DSL metamodels and code generation rules (rules of transfor-
mation “Model-Text” type) are included in the ontology.

The development of DSL metamodels, new DSL generation rules, and code generation
does not require knowledge of programming languages because users work with editors and
designers in a visual environment. To create an ontology of the subject area, it is proposed to

use the Mask method [23]. Thus, the requirements for user qualifications and programming
skills are reduced.

The generalized structure of the language toolkits used to develop a prototype of data visu-
alization tools based on a language-oriented approach is shown in Figure 2.

Figure 2: Simplified structure of knowledge-driven language toolkits

Only components that need to be implemented to create custom DSM-based data visuali-

zation are shown in Figure 2. Multifaceted ontology is the core of the system. It includes:
- Ontology of visual modeling languages, including metamodels of basic languages in-

tended for the development of visual models, as well as metamodels of languages (DSLs) cre-
ated on their basis.
- Ontology of text languages, containing descriptions of text languages grammars.
- Ontology of transformation rules type of “Model-Text” (code generation rules) that

contains twos, the first elements of which are elements of visual languages metamodels, and
the second are non-terminal symbols of text languages constructions.
- Ontology of domains in which users solve their tasks for which DSLs are created.
- Ontology of rules for generating metamodels of new DSL including a description of

the rules for mapping ontologies of domains onto visual languages metamodels selected as
basic for generation of DSLs reflecting the specifics of domains.
- Ontology of models containing information on created models.
- Ontology of user's actions storing information on actions of users when they are work-

ing with models (for example, focusing the mouse cursor or clicking).
- Ontology of interaction, representing information on possible actions of users when

working in interactive mode in the system, for example, building a new model, or scaling its
part, etc.
- Ontology of interpretation rules storing triples, the first elements of which are ele-

ments of metamodels of visual languages, the second elements are user's actions, and the
third are interactive actions that can be used in the development of interactive visualizations.

A multifaceted ontology also contains functions that implement basic algorithms providing
automation of the DSL metamodels generation, model transformation (in particular, code
generation – model transformation of “Model–Text” type), creation of interactive models,
their interpretation:
- F1 is a function that automates the development of new languages via mapping the

domain ontology elements onto the elements of the selected base language metamodel, creat-

ing DSL generation rules. The result is generation (mapping) rules defined by the user using a
special constructor.
- F2 is a function that maps text language constructs to elements of visual language met-

amodels to create model transformation (code generation) rules.
- F3 is a function that implements the generation of a new DSL metamodel according to

the rules obtained using F1. The metamodel of the new DSL is preserved in the ontology of
visual languages. The new DSL is a subclass of the base language to which the rules for map-
ping the domain ontology to its metamodel are applied (rules are set by the user when execut-
ing F1).
- F4 is a function that implements model transformations in accordance with the speci-

fied rules (for text target languages, code generation is performed as transformation of the
“Model–Text” type).
- F5 is a function that takes elements of metamodels of visual languages, user scripts and

interactive actions to create interpretation rules for interactive models (visualizations).
- F6 is a function that applies predefined interpretation rules to visual models to provide

users with the ability to interact with models, create interactive visualizations.
The multifaceted ontology also includes the ontology of data sources, the ontology of func-

tional modules, which are also used for creating visualization models.
The formal basis for creating visual models is a hypergraph with poles (HP-graph) [22].
When developing visual languages, language toolkits build their descriptions in the form of

graph grammars or metamodels. To create these descriptions, the corresponding metalan-
guages should be used (like formal grammars of textual languages, which can be set in the
form of BPF (Backus-Naur form) or Wirth diagrams). The metalanguage should provide the
ability to represent the HP-graph, all its elements. Assessment of metalanguages is given in
Table 1. The most suitable metalanguage in terms of representing all the elements that can be
used in the graphical model is the GOPPRR language. (Graph, Object, Port, Property, Rela-
tionship, Role) of the MetaEdit+ DSM platform, where Graph represents the whole model,
Object is a model element represented by a vertex, Port represents a point through which a
vertex-object is associated with other vertices, Property is a property of a vertex or relation-
ship, Relationship is a relationship between objects, Role is the role of the apex in communi-
cation.
Table 1: Comparison of metalanguages used in language toolkits

Metalanguage Model Object of
Model Relationship Role Pole Property

EMOF ─ Class Property, Association ─ ─ Property

Ecore ─ EClass EReference ─ ─ EAttribute

GOPPRR Graph Object Relationship Role Port Property

ArkM3 ─ Class Association, Compo-
sition ─ ─ Property

WebGME
MML FCO FCO

Pointer, Set,
Connection,

Containment,
Inheritance, Mixin

Connection
Role ─ Attribute

None of the languages allows you to describe in the model “generalized” connections in
which many vertices can participate.

The developed graph model (HP-graph) has expressive capabilities that allow you to repre-
sent various types of visual models, schemes, and diagrams. To implement language toolkits,
a language HPGPR is proposed [22], which is an extension of GOPPRR. The developed meta-
language (Figure 3) allows to describe metamodels of visual languages using all the elements
of HP-graphs.

Figure 3: Description of metalanguage HPGPR

To implement the proposed approach, the following tasks must be solved:
1. Analyzing different types of diagrams and building an ontology of data visualization lan-

guages based on the classification of diagrams.
2. Developing metamodels of basic visual languages for different types of diagrams used

for data visualization (it is the basis for creating new types of visualization).
3. Developing rules for generating new DSLs (new data visualization languages) that reflect

the specifics of user’s domains and generating new types of diagrams based on the developed
rules.

4. Developing transformation (code generation) rules to implement a new type of data vis-
ualization.

The results need to be illustrated with examples of data visualization using designed facili-
ties.

3. Developing an Ontology of Data Visualization
Languages

The variety of visualization methods is quite large and continues to expand, which is con-
firmed by the constant emergence of new specialized types of diagrams (tree, chord, network,
etc.).

The choice of the most suitable type of visualization is primarily determined by what task
the user solves, what idea he should convey using the diagram [24, 25]. To determine which
visualization methods are sufficient to implement most visualization ideas, it is necessary to
dwell on a specific taxonomy, to classify data visualization methods.

It was decided to focus on the five-category structure proposed by Andy Kirk [25]:
1) comparison of categories;
2) evaluation of hierarchies and relations of part to whole;
3) presentation of changes over time;
4) determination of types of connections and relationships;
5) mapping geospatial data.
When developing the classification, the following characteristics were considered:
1) the degree of popularity of imaging methods;

2) the inclusion, in addition to standard visualization methods (linear graphs, histo-
grams, pie charts, histograms, scatter diagrams, etc.) of methods for visualizing abstract data
characterized by multidimensionality and the absence of explicit spatial bindings;

3) the ability to present any type of visualization in an interactive form.
As a result, a classification was developed that included sixteen visualization methods, dis-

tinguished depending on the purpose of creating visualization (Figure 4). This classification is
the basis for the development of the ontology of data visualization languages, the creation of
metamodels of these languages.

The process of building an ontology of data visualization languages includes the following
steps:

1. A formal description of an abstract diagram including properties common to all chart
types (title, legend, width, height, and so on).

2. Distinguishing types of diagrams into separate classes based on the developed classifi-
cation of diagrams (Figure 4).

3. Add class-specific chart elements to the chart class descriptions.
4. Defining relationships between the classes.
Formalized model is created for each type of diagrams – a representation of the diagram in

the ontology is built (metamodel of DSL is created that allows to describe this type of visuali-
zation).

Figure 4: Classification of visualization methods by purpose

Figure 5 shows the abstract diagram class and its subclasses in the ontology. Each of the

diagrams consists of specific elements with their own properties, which are also presented in
the ontology (Figure 6).

Figure 5: Fragment of a multifaceted ontology: hierarchy of diagram classes in the ontology

Figure 6: Fragment of a multifaceted ontology: hierarchy of chart's element classes

in the ontology

The designed ontology is the basis for developing customizable data visualization through

the creation of domain-specific languages and the generation of code implementing the creat-
ed visualization model.

4. Customized Data Visualization with DSLs:
Experimental Results

To approve the proposed approach (to implement of a research prototype visualization
tools), it is necessary to solve following tasks:

1) to build an ontology of languages and to supplement it with metamodels of basic lan-
guages for creating diagrams of existing types (data visualization models in traditional ways);

2) to set rules for generating new DSLs to visualize data in customized style based on do-
main ontology and basic languages metamodels;

3) to define rules for generating code to implement customized data visualization;
4) to extend data visualization models for creation interactive visualization.
The results of experiments aimed at creating DSLs for describing diagrams for specific

domains, customizing languages and implementing interactive data visualization using these
languages are described below.

4.1. Developing DSL Metamodels Based on Domain Ontology
After defining the main classes and their unique elements in the ontology of languages, it is

necessary to define hierarchical (“is-a” – “class-subclass” relation) and “part-whole” (“part-
of”) relationships between classes, as was shown above (Figures 5, 6). Relationships “is-a”
type are automatically created between the parent class and the child class in the hierarchy
(Figure 5).

Special relationships are created to show the relationship between a particular chart and
its elements (Figure 6). All elements of diagrams have their own sets of attributes.

Each chart (diagram) type has its own base language. The adaptation of the base language
to the needs of users is performed by matching the elements of the diagrams presented in the
metamodel of the base language with the elements in the description of the ontology of the
corresponding subject area. Figure 7 presents a language metamodel of DSL that is custom-
ized to show ratings.

Figure 7: Metamodel of DSL “Rating-Language” in the ontology of visual languages

The designed DSL metamodel presents the basic components of the developed graphical

notation, such as “Axis” (axes), “Bar” (column), as well as “Area” (area). Each component has
properties (attributes), the description of which isn't shown so as not to clutter up the illus-
tration. The class “Rating” is associated with the axis class, which is used to display the value
area of valid ratings, in this case “Excellent”, “Really_Good”, “Good”, “Normal”, “Bad” and
“Readlly_Bad”. Classes such as “Source” and “Receiver” are used to represent the source and
sink of data, respectively. Both classes are associated with another “Filter” class that allows
filter data according user's requirements.

Using the described language, the user can build his own visualization model, develop a di-
agram in the visual constructor, determining the values of all attributes specified in the lan-
guage metamodel. Figure 8 shows a diagram developed using the described DSL.

Figure 8: User’s chart built with DSL “Rating-Language”

With developed DSL, visualization models are built that meet the needs of users, but the

implementation of the developed data visualization model requires either code generation or
model interpretation.

Consider another example. Researchers (zoologists) need to visualize data on the distribu-
tion of bee species across Europe. To do this, they can use the proposed approach. Users can
take the created basic metamodel again, apply the generation algorithm for new domain and
get a new language. It will differ from the base one in that it will have no “Axis” component,
and the concept of “Figure” is redefined by the concept of “Pie Chart”. So, they will be able to
build the diagram shown in Figure 9.

Figure 9: Diagram (“Pie Chart”) showing distribution of bee species across Europe

Let's say that from the available data it is possible to extract information not only about the

ratio of species, but also the distribution of a particular species by European countries. This
information allows users to build new charts detailing the built one. In order not to open a
new diagram for each type of bee separately and quickly switch between the necessary data, it
is possible to use the “Event” object (event) in the developed model, which allows you to de-
termine the reaction to events, user actions. This object allows users to create interactive vis-
ualizations of the data. In this case, for the selected element of the diagram (sector), on which
the cursor is placed, it is proposed to build a new diagram using the data of the original data

set that is “contained” in the selected fragment. After adding the required component and set-
ting up an additional chart, extended charts should be built interactively to complement the
original pie charts. The view of these diagrams is shown in Figure 10.

Figure 10: The extended diagram (“Pie Chart”) showing distribution of bee species

by European countries

A metamodel of the language designed to create this type of visualization is shown in Fig-

ure 11. The diagram metamodel is built on the basis of the language described above (frag-
ments of the ontology of languages are shown in Figures 5, 6) developed to create the differ-
ent types of diagrams.

Figure 11: Metamodel of DSL designed to create an interactive visualization based

on "Pie-chart"

By applying transformation rules, we can obtain program code that implements the devel-

oped interactive visualization model.

4.2. Code Generation for Customized Data Visualization
Most modern DSM platforms use a template-based code generation approach, which al-

lows efficient reuse of templates (patterns) [26]. Templates are described not for a specific
model, but for a metamodel [27] (in this case, for a visualization language metamodel). Each
template consists of two parts – static and dynamic. The static part is the same for all models

developed with using the language defined by the metamodel, and the dynamic part uses the
information (parameters, values of attributes, etc.) extracted from the specific model.

In this paper, we propose to use the approach described in [23]. Visual environment
(transformation rule constructor) is used for creating rules for transforming models. Each
rule consists of the left side, which indicates the objects of the visual language metamodel,
and the corresponding right side, which represents the constructions of text languages, which
are templates of target code.

Python and R are the preferred programming languages for data visualization purposes.
Python is widely used due to its many suitable libraries, including Matplotlib, Seaborn, and
Plotly, as well as its simple syntax. Although R is inferior to Python, it also has a rich arsenal
of visualization tools and remains a popular choice in academia. Thus, it makes sense to use
Python or R code snippets containing library function calls to visualize data as text language
constructs in templates.

After creation of transformation rules, user can apply them to user's specific models to
generate custom visualization code. The code generation algorithm is based on bypassing the
internal representation of models in the form of a graph in the ontology.

Users can generate program code in the appropriate programming language for custom-
ized visualization according to the rules specified by the user who developed the model apply-
ing the developed templates. If transformation rules are designed for a base language, they
will apply to all models developed using all DSLs built on the base language. Thus, the devel-
oped generation rules can be reused for the entire hierarchy of developed languages. This re-
duces the complexity of customized data visualization development, simplifies development
of new visual models for users.

As an example, the function code for building a histogram in Matplotlib is shown in
Figure 12 (a). This code is generated on the basis of the above model according to the
transformation rules specified by the user in the transformation rule constructor and
presented in the ontology. The result of execution of this code is presented in Figure 12 (b) as
built customized diagram.

a b
Figure 12: The code, generated according to transformation rules (a),

and the result of this code execution (b)

If interpretation rules, described for a language developed by user, contain rules for user

interaction with built visualizations, then the code generated at the “Model-Text” transfor-
mation will support the described interpretation rules (Figure 13). Thus, the visualization be-
comes interactive.

a b
Figure 13: Interactive visualization code generated by transformation rules with

interpretation of events (user actions) (a), and the result of this code execution (b)

When interpretation rules are added by user, transformation rules are automatically

extended with these capabilities without the need to re-describe the transformation rules. The
code generated for the same transformation rule, considering the interpretation rule,
according to which when the mouse hovers over a specific column, it should be highlighted, is
shown in Figure 13 (a), and the result of executing the generated code is shown in
Figure 13 (b). The listing presented in Figure 13 (a) shows that the generated code has really
become more complicated and now includes processing the mouse pointing event on the
histogram columns using the “on_hover” function. When mouse id hovered over a column,
its transparency will decrease, and its border will be painted black.

The result of the code generation (applying transformation rules for the metamodel shown
in Figure 11 is presented in Figure 14.

Figure 14: Code generated for interactive visualization with metamodel shown in Figure 11

5. Discussion of Results
The DSM-based approach to developing data visualization tools presented in the paper

overcomes some of the limitations of existing visualization tools and provides users with the
ability to customize data visualization models for different domains and tasks via creating
special languages (DSL) without high requirements for user's programming skills.

The ability to reuse created languages, developed transformation rules reduces the com-
plexity of creating visualizations. All developed DSL metamodels and language grammars,
transformation rules are stored in the ontology and can be reused. Users can adjust the pa-
rameters of models defined with languages, or through creating new languages based on pre-
viously developed ones. Users can extend models with interpretation rules for different ac-
tions of users to develop interactive data visualizations.

Previously, language tools were used to describe graphic notations, to develop visual lan-
guages intended for the design of information systems: to describe data structures, algo-
rithms, etc., to develop and generate code for simulation models.

The results presented in this paper show the promise of the proposed approach to the de-
velopment of languages and models for various purposes.

As the results presented in this paper have shown, the possibilities of applying this ap-
proach can be wider: the language toolkit allows solving problems of effective data visualiza-
tion and can be integrated into systems for various purposes, in particular, it can be useful in
creating analytical systems, etc.

6. Conclusion
The scientific novelty of the approach to the development of language toolkits is in the use

of ontology at all stages of the life cycle of the DSM tools, which provides the ability to flexibly
tune to different domains and user's tasks, expanding the functionality of the system.

The task of approval the approach when creating data visualization tools is solved:
- Based on the analysis of data visualization methods and tools, metamodels of basic

languages were designed for the development of standard types of diagrams. These meta-
models are the basis for generating custom visualizations of data obtained from various
sources, tuned to the specifics of the user's domains and tasks.
- To illustrate the possibilities of customizing visualization to the needs of users, DSL

metamodels are developed on the basis of basic languages, which include non-standard ele-
ments of diagrams, as well as elements that provide interactive visualization. Transformation
rules have been built for created DSLs (rules for generating code that creates custom visuali-
zations with specified characteristics).

The practical applicability of this approach is shown by simple examples, but in the future,
it is supposed to expand the capabilities of the developed software (research prototype), in
particular, the possibilities of interactive visualization through the interpretation of the creat-
ed models. The theoretical basis for developing this approach is Vega-Lite [28] – a high-level
grammar that allows to quickly specify interactive data visualization. In addition, it is pro-
posed to expand the possibilities of generating new DSLs, to implement the ability to inte-
grate several languages as base, to combine their capabilities in the new DSL.

Visualization tools can be expanded by means of evaluating built visualizations for compli-
ance with the criteria and recommendations proposed in [6, 7], which should help users avoid
errors during development and create effective visualizations.

References:
1. J. Sawicki and M. Burdukiewicz, “VisQualdex: a Comprehensive Guide to Good Data

Visualization,” Scientific Visualization, vol. 15, no 1, pp 127–149, 2023.
DOI: 10.26583/sv.15.1.11.

2. S. M. Alyahya, “Evaluating Computer Interactions and Infographics Usability:
Analyzing Individual’s Performance through Viewing Patterns,” Scientific Visualization,
vol 15, no 5, pp 111–135, 2023. DOI: 10.26583/sv.15.5.10.

3. T. M. Shamsutdinova, “Visualization of Knowledge in the Educational Process,”
Scientific Visualization, vol 15, no 1, pp 100–111, 2023. DOI: 10.26583/sv.15.1.09.

4. V. A. Nemtinov, A. A. Rodina, A. B. Borisenko, V. V. Morozov., Yu. V. Protasova, and
K. V. Nemtinov, “Integrated Use of Various Software Environments for Increasing the Level
of Visualization and Perception of Information,” Scientific Visualization, vol 15, no 2, pp 1–10,
2023. DOI: 10.26583/sv.15.2.01.

5. R. A. Isaev and A. G. Podvesovskii, “Cognitive Clarity of Graph Models: an Approach to
Understanding the Idea and a Way to Identify Influencing Factors Based on Visual Analysis,”
Scientific Visualization, vol 14, no 4, pp 38–51, 2022. DOI: 10.26583/sv.14.4.04.

6. S. R. Midway, “Principles of Effective Data Visualization,” Patterns, vol 1, no 9,
article 100141, 2020. DOI: 10.1016/j.patter.2020.100141.

7. S. R. Midway, J. R. Brum, and M. Robertson, “Show and tell: approaches for effective
figures,” Limnology and Oceanography Letters (L&O Letters), vol 8, no 2, pp 213–219, 2023.
DOI: 10.1002/lol2.10288.

8. E. Oral, R. Chawla, M. Wijkstra, N. Mahyar, and E. Dimara, “From Information to
Choice: A Critical Inquiry Into Visualization Tools for Decision Making,” IEEE Transactions
on Visualization and Computer Graphics, vol 30, no 1, pp 359–369, 2024. DOI:
10.1109/TVCG.2023.3326593.

9. X. Qin, Y. Luo, N. Tang, and G. Li, “Making Data Visualization More Efficient and
Effective: a Survey,” The VLDB Journal, vol 29, no 1, pp 93–117, 2019. DOI: 10.1007/s00778-
019-00588-3.

10. R. Morgan, G. Grossmann, M. Schrefl, M. Stumptner, and T. Payne, “VizDSL: A Visual
DSL for Interactive Information Visualization,” Proc of the 30th Int Conf “Advanced
Information Systems Engineering” (CAiSE 2018), 2018, pp 440–455. DOI: 10.1007/978-3-
319-91563-0_27.

11. M. T. Cepero García and L. G. Montané-Jiménez, “Visualization to Support Decision-
Making in Cities: Advances, Technology, Challenges, and Opportunities,” Proc of the 8th Int
Conf in Software Engineering Research and Innovation (CONISOFT), 2020, pp 198–207.
DOI: 10.1109/CONISOFT50191.2020.00037.

12. H. M. Shakeel, S. Iram, H. Al-Aqrabi, T. Alsboui, and R. Hill, “A Comprehensive State-
of-the-Art Survey on Data Visualization Tools: Research Developments, Challenges and
Future Domain Specific Visualization Framework,” IEEE Access, vol 10, pp 96581–96601,
2022. DOI: 10.1109/ACCESS.2022.3205115.

13. V. S. Zayakin, L. N. Lyadova, V. V. Lanin, E. B. Zamyatina, and E. A. Rabchevskiy,
“An Ontology-Driven Approach to the Analytical Platform Development for Data-Intensive
Domains,” Knowledge Discovery, Knowledge Engineering and Knowledge Management.
IC3K 2021. Communications in Computer and Information Science, vol 1718, pp 129–149,
2023. Springer, Cham. DOI: 10.1007/978-3-031-35924-8_8.

14. V. Zayakin, L. Lyadova, and E. Rabchevskiy, “Design Patterns for a Knowledge-Driven
Analytical Platform,” Proceedings of the Institute for System Programming of the RAS
(Proceedings of ISP RAS), vol 34, no 2, pp 43–56, 2022. DOI: 10.15514/ISPRAS-2022-34(2)-
4.

15. K. Smeltzer, M. Erwig, and R. Metoyer, “A transformational Approach to Data
Visualization,”Proc of the International Conference on Generative Programming: Concepts
and Experiences (GPCE 2014). 2014. P. 53–62. DOI: 10.1145/2658761.2658769.

16. Smeltzer K., Erwig M. A Domain-Specific Language for Exploratory Data Visualization
// Proc of the 17th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE 2018), 2018, pp 1–13. DOI: 10.1145/3278122.3278138.

17. C. Ledur, D. Griebler, I. Manssour, and L. G. Fernandes, “A High-Level DSL for
Geospatial Visualizations with Multi-core Parallelism Support,” Proc of the IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC). 2017, pp 298–304. DOI:
10.1109/COMPSAC.2017.18.

18. L. Ladenberger, I. Dobrikov, and M. Leuschel, “An Approach for Creating Domain
Specific Visualisations of CSP Models,” Software Engineering and Formal Methods. SEFM
2014. Lecture Notes in Computer Science(), vol 8938, pp 20–35. Springer, Cham.
DOI: 10.1007/978-3-319-15201-1_2.

19. A. D. Dzheiranian, I. D. Ermakov, K. A. Proskuryakov, and L. N. Lyadova, “Designing
Data Visualization System Based on Language-Oriented Approach,”Proceedings of the
Institute for System Programming of the RAS (Proceedings of ISP RAS), vol 36, no 2,
pp 127–140, 2024. DOI: 10.15514/ISPRAS-2024-36(2)-10.

20. L. Lyadova, A. Sukhov, and M. Nureev, “An Ontology-Based Approach to the Domain
Specific Languages Design,” Proc of the 15th IEEE Int Conf on Application of Information

and Communication Technologies (AICT2021), 2021, 6 pp. DOI:
10.1109/AICT52784.2021.9620493.

21. G. Kulagin, I. Ermakov, and L. Lyadova, “Ontology-Based Development of Domain-
Specific Languages via Customizing Base Language,” Proc of the 16th IEEE Int Conf on
Application of Information and Communication Technologies (AICT2022), 2022, 6 pp. DOI:
10.1109/AICT55583.2022.10013619.

22. L. Lyadova, I. Ermakov, V. Lanin, and K. Proskuryakov, “Approach to the Development
of Ontology-Driven Language Toolkits Based on Metamodeling,” Proc of the IEEE 17th
International Conference on Application of Information and Communication Technologies
(AICT2023), 2023, 6 pp. DOI: 10.1109/AICT59525.2023.10313152.

23. N. Matta, J. L. Ermine, G. Aubertin, and J. Y. Trivin, “Knowledge Capitalization with a
Knowledge Engineering Approach: The Mask Method,” Knowledge Management and
Organizational Memories, 2002, pp 17–28. Springer, Boston, MA. DOI: 10.1007/978-1-4615-
0947-9_2.

24. G. Zelazny, The Say It with Charts Complete Toolkit. New York: McGraw-Hill
Professional, 2006. 312 pp.

25. A. Kirk, Data Visualization: A Successful Design Process. Birmingham: Packt
Publishing Ltd, 2012. 189 pp.

26. N. Kahani, M. Bagherzadeh, and J. Cordy, “Survey and Classification of Model
Transformation Tools,” Software & Systems Modeling, vol 18, pp 2361–2397, 2019. DOI:
10.1007/s10270-018-0665-6.

27. J. Ding, J. Lu, G. Wang, J. Ma, D. Kiritsis, and Y. Yan, “Code Generation Approach
Supporting Complex System Modeling Based on Graph Pattern Matching,” IFAC-
PapersOnLine, vol 55, no 10, pp 3004–3009, 2022. DOI: 10.1016/j.ifacol.2022.10.189.

28. A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-Lite: A Grammar
of Interactive Graphics,” IEEE Transactions on Visualization and Computer Graphics,
vol 23, no 1, pp 341–350, 2016. DOI: 10.1109/TVCG.2016.2599030.

