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Abstract 
The paper considers the case of faceted solids and discusses visualisation of geometric 

solids in the form of a three-parameter set of points which belongs to a three-dimensional 
space. To visualize geometric solids, taking advantage of the modern GPU hardware accelera-
tion, the Ray marching method is used. The implementation considers the definition of a 
signed distance function, which is reduced to the task of determining the set of intersection 
points of the projection rays with the rendered geometric solid. After that, for each pixel of 
the screen, its color is determined in accordance with whether the ray passes through the ge-
ometric solid or not. The analytical description of geometric solids and the solution of their 
intersection problem with projecting rays are solved within the framework of the point calcu-
lus mathematical apparatus. As a result, it was concluded that the proposed approach justi-
fies itself, providing high rendering performance and the complete absence of visual artifacts 
when rendering faceted solids.  

Keywords: solid-state modeling, geometric solid, point calculus, visualization, Ray 
marching, distance sign function, three-parameter set of points.  

 

1. Introduction 
The paper [1] formulated the problem of visualization of solid models presented as a 

three-parameter set of points in three-dimensional space. The work introduces a new concept 
of defining geometric solids in the form of a three-parameter set of points in three-
dimensional space [2, 3]. The analysis of existing approaches to the visualization of a three-
parameter set of points, which are described by a parametric equations system, carried out in 
[1], showed the absence of software solutions which an implement the visualization of three-
dimensional solids obtained in accordance with the new concept. Given the analytical nature 
of the solid modeling engine to provide faster rendering on existing GPUs, it was decided to 
use the Ray marching method, which is used to render scenes in real time. The Ray marching 
method [4-6], by analogy with the Ray tracing method [7-10], has found wide application in 
solving a variety of scientific visualization problems in domestic and foreign practice. The va-
riety of tasks, in turn, gave rise to many options for real-time visual representation of scenes. 
But in most cases, the task is reduced to determining the function of intersection of the ren-
dered object with the ray and determining the signed distance function [11-13]. Based on the 
fact that geometric solids in the form of a three-parameter set of points in three-dimensional 
space are parametrized in point calculus [14-15], to determine the distance function, it is nec-
essary to solve the problem of intersection of geometric solids with projecting rays in point 
calculus. 
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2. Determining the Intersection Point of a Ray with a Ge-
ometric Solid 

In point calculus, the projecting ray is conveniently defined as a straight-line segment. 
Then the problem is reduced to determining the point of intersection of a straight-line seg-
ment with a geometric solid. A line is uniquely defined by two points. Then the beam of pro-
jecting rays can be specified by fixing one point in space, and the second one can be repre-
sented as the current point of the picture plane. 

The point equation of a straight-line segment in point calculus has the following form: 

,N Pt Qt   

where P  and Q  are the points through which the line passes, which are determined by their 

coordinates; 
t  is the parameter; 

1t t   is the parameter's addition to 1. 
Such a parametrization of the line ensures its passage through the point P  at 0t   and 

through the point Q  at 1t  . If parameter  ;t   , then we get an infinite line passing 

through the points P  and Q . And for  0;1t  we get the segment PQ . This feature can be 

used to determine the points of intersection of a ray with a geometric solid, if you place one 
point in front of the geometric solid, and the second behind it. Then the intersection points of 

the ray with the geometric solid will fall within the range of the parameter values  0;1t . To 

determine a beam of rays, it is necessary to place a fixed point on one side of the geometric 
solid, and the current one, belonging to the plane, on the other side. Such a plane can be de-
fined using any three points that do not lie on the same straight line. For example, forming a 

beam of rays passing through a point P  (fig. 1), plane 1 2 3A A A  can be set by relations on the 

sides of the triangular simplex: 

 1 2 31 ,Q A A A         

where   and   are the current parameters that determine the position of the point Q  in 

plane 1 2 3A A A . Within the interior of a parallelogram formed on the basis of a 1 2 3A A A  triangle, 

these parameters vary from 0 to 1, but in total they can belong to the interval  ;  . 

 

 
Fig. 1. Geometric scheme for determining a beam of rays in three-dimensional space 

 
In Fig. 1, the current M  point shows some geometric solid. In general, the point equation 

of a three-dimensional solid is determined by the following point equation: 

       , , , , , , , , ,M Ap u v w Bq u v w Cr u v w Ds u v w     

where A , B , C  and D  are the points of a three-dimensional simplex (any four points that do 
not lie in the same plane); 

 , ,p u v w ,  , ,q u v w ,  , ,r u v w  and  , ,s u v w  any continuous and differentiable functions of 

parameters ,  ,  u v w . 

The condition for the current M  point to belong to the space of a three-dimensional 
ABCD  simplex is: 



       , , , , , , , , 1.p u v w q u v w r u v w s u v w     

Based on this, any of the four free functions of ,  ,  u v w  parameters can be excluded. 

At the intersection of a straight-line segment and a geometric solid, for all common 
points, the point equation will be valid: 

       , , , , , , , , .P Ap u rt Qt v w Bq u v w C u v w Ds u v w     

To determine the ,  ,  u v w  and t  parameters it is necessary to perform a coordinate-by-

coordinate calculation [14]. For three-dimensional space we can formulate the following 
equation system: 
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Thus, we obtain a system of three equations with four unknown variables. To solve it, we 
can consider that the edge values of the ,  ,  u v w  parameters of a geometric solid determine 

the shell of its surface, the points of intersection that we need to find. Since a geometric solid 
can occupy completely different positions in space relative to the ray, it is impossible to de-
termine in advance which two of the surfaces of the shell of the geometric solid will intersect 
the ray. Therefore, it is necessary to solve six systems – special cases, which are a conse-
quence of the use of edge parameter values. In most cases, the parameters of point equations 
change from 0 to 1. Then it is necessary to fix in turn the values of the parameters ( 0u  , 

1u  , 0,v   1v  , 0,w   1w  ) and obtain particular solutions to the system of parametric 

equations. From all the solutions, it is necessary to choose only those, which provide the ob-
tained parameter values in the range from 0 to 1. There will be only two such solutions if the 
ray intersects the geometric solid, and one – if it touches the solid. 

3. Visualization of Solid Models on the Example of Faceted 
Solids 

Consider an example of determining the points of intersection of a segment with a solid of 
a tetrahedron (Fig. 2). 

 

 
Fig. 2. Geometric scheme of the PQ  segment intersection with the solid of the tetrahedron 

 
In [1, 2], the point equation of the solid of a tetrahedron is given, which is determined by 

the points of the three-dimensional ABCD  simplex and three linear parameters ,  ,  u v w : 

,M Auvw Bvw Cuvw Dw     

where 1u u  , 1v v   и 1w w  . 
Based on the method described above, we get: 



 

 

A B C D

A B C D

A B C D

A

Q

B C D

A

P Q

P Q

P Q

P

B

Q P

PB C D

A C D

P

P Q

P

u

Auvw Bvw Cuvw Dw

x uvw x vw

y

x uvw x w

y uvw y vw y uvw y w

z uvw z vw z vw z w

x uvw x vw x uv

t Qt

x t x t

y t y t

z t z t

x x x t

yv

w x w

y uvw y vw y u w y w

z uvw z vw z u

y t

w z zvw z









 

 

 

   



    


   


   



   

   

     

.

Pz t






  

Next, it is necessary to fix in turn the edge values of the current parameters of the tetra-
hedron solid ( 0u  , 1u  , 0v  , 1v  , 0w  , 1w  ) and solve the resulting systems of 
equations. 

To conduct computational experiments, we accept the following test coordinates of the 
initial points: 

           0;0;0 ,  3;5;0 ,  8;3;0 ,  4;2;7 ,  7;5;4 ,  0;1;2 .A B C D P Q  

Using the coordinates of the initial points, we obtain 6 systems of parametric equations. 
Systems for 0v   and 1w   have no solution. At 1v   and 0w   – the resulting solutions go 

beyond the range of parameter values  0;1 . At 0u   parameter values satisfy the required 

conditions 
9 1 5

,  ,  
22 4 11

t v w   , and at 1u   – 
12 4 52

,  ,  
19 9 133

t v w   . Thus, it turns out 

that on the interval of parameter values 
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 part of the segment PQ  is inside the 

tetrahedron, and on the intervals 
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 – outside the tetrahedron 

ABCD . 
The proposed approach can be used to visualize not only facets, but also other geometric 

solids. At the same time, in relation to faceted solids, another approach can be implemented 
based on the intersection of the projecting beam with the plane. 

In the general case, a PQ  segment (Fig. 2) can have two intersection points with a 

ABCD  pyramid, one intersection point (when the segment intersects the edges and vertices 
of the pyramid) and no intersection points at all. 

As a special case, we define the S  point of intersection of the PQ  segment with the BCD  

face. To do this, we set the point equation of a straight line using the parameter  : 

S P Q   , where 1   . P  and Q  points are defined in the ABCD  simplex using the 

corresponding parameters: 
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The volumes iV  of the corresponding tetrahedra can be easily determined in terms of the 

coordinates of the vertices. In this case, multiplication by 1/6 can be abolished, because it will 
still shrink. As an example, we give a determinant for calculating the volume of a ABCD  tet-
rahedron. All other volumes of oriented tetrahedra in a ABCD  simplex can be found similar-
ly. 
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Next, we determine the value of the   parameter, at which the volume of the SBCD  tet-
rahedron is equal to zero. In accordance with the point calculus S   theorem [14], we obtain: 

       
0 1 0 0

0.
0 0 1 0

0 0 0 1

;    .

.

Q P P Q P P Q P P Q P P

QP

P Q Q P

Q P
S P Q

Q P P Q

Q QP P
S P Q

Q P P Q Q P P Q

Q P
S P Q

Q P P Q

p p p q q q r r r s s s

pp

p p p p

p p
x x x

p p p p

p pp p
S P Q y y y

p p p p p p p p

p p
z z z

p p p p

   

 

       





 
 


 

 



    
   


  

   

The resulting S  point equation can also be determined in the original ABCD  simplex by 
replacing the P  and Q  points with the corresponding equations, but this is not necessary to 

visualize the tetrahedron. 
In the same way, we define the point R : 
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As a result, we obtain the following conditions: 
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, the ray segment lies inside the solid of the tetrahedron. 



 

If ; ;P P

P Q P Q

r p

r r p p


   
             

, the ray segment does not belong to the solid of the 

tetrahedron. 
Based on the relative position of the projection center and the picture plane, as shown in 

Fig. 1,  0;1 . At the same time, special cases are possible when the projecting ray belongs 

to one of the faces of the tetrahedron, coincides with its edge, or passes through the vertex. 
This does not affect the computational algorithm described above. 

4. Software Implementation and Results of Computational 
Experiments 

To conduct computational experiments on the visualization of faceted solids, a test pro-
gram was written in the GLSL language, containing 167 lines of code (the source code is avail-
able under the MIT license on GitHub: https://github.com/icosaeder/tpps-raycast). Visuali-
zation is done in the Web browser using a free resource ShaderToy 
(https://www.shadertoy.com) that provides a convenient toolkit for launching programs in-
tended for execution on a graphics card. 

The aim of a test program was to check the ability to efficiently render faceted solids de-
fined in point calculus. The block schema of the developed numerical algorithm is presented 
in Fig. 3.  

 

 
Fig. 3. Block schema of the proposed rendering algorithm 

 
The input for this algorithm is a definition of a faceted solid 𝐹 in point calculus using the 

points 𝐴, 𝐵, 𝐶, 𝐷, and the functions 𝑝, 𝑞, 𝑟, 𝑠 as described in Section 2. The output is the color 
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of the individual pixel of an image. When executed for each pixel of an image, this algorithm 
renders a given faceted solid 𝐹 from a point of view determined by points 𝑃, 𝑇, and 𝑄.  

Although the proposed algorithm is written in a sequential manner, it assumes an implic-
it parallel execution on a graphics card within a SIMD (Single Instruction Multiple Data) par-
adigm. The parallelism is achieved by executing this algorithm concurrently for a subset of 
pixels. The number of pixels in a subset is determined dynamically by the graphics card based 
on its hardware capabilities.  

The software implementation is based on the numerical solution of systems of equations 
using the iterative Newton method [16]. At each i-th iteration, a new approximation of the so-

lution 𝜎(𝑖) = {𝑥(𝑖), 𝑦(𝑖), 𝑧(𝑖)} of the 𝐹 system is calculated by the formula: 

𝜎(𝑖) = 𝜎(𝑖−1) − 𝐽(𝜎(𝑖−1))
−1
𝐹(𝜎(𝑖−1)), 

where 𝐽 is the Jacobian of the 𝐹 system, which is calculated numerically by the formula: 

𝐽(𝜎) =

(
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. 

The parameters 𝑢, 𝑣, 𝑤 alternately act as the unknown variables 𝑥 and 𝑦, and the parame-
ter 𝑡 always acts as the unknown variable 𝑧. Substitutions are carried out according to the fol-
lowing scheme for all 6 systems described in Section 2: 

1. 𝑢 = 0, 𝑥 = 𝑣, 𝑦 = 𝑤, 𝑧 = 𝑡. 
2. 𝑢 = 1, 𝑥 = 𝑣, 𝑦 = 𝑤, 𝑧 = 𝑡. 
3. 𝑣 = 0, 𝑥 = 𝑢, 𝑦 = 𝑤, 𝑧 = 𝑡. 
4. 𝑣 = 1, 𝑥 = 𝑢, 𝑦 = 𝑤, 𝑧 = 𝑡. 
5. 𝑤 = 0, 𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑡. 
6. 𝑤 = 1, 𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑡. 
Partial derivatives in the composition of the Jacobian are calculated in accordance with 

the difference scheme, for example: 
𝜕𝐹

𝜕𝑥
(𝜎) =

𝐹({𝑥 + ∆, 𝑦, 𝑧}) − 𝐹({𝑥 − ∆, 𝑦, 𝑧})

2∆
. 

It was experimentally found that an acceptable accuracy of the solution is achieved when 
∆= 10−3. 

The first approximation 𝜎(0) is taken in our case identically equal to zero. However, for 

some 𝐹, such a 𝜎(0) may lead to a loss of solution, since the Jacobian at the first iteration may 

turn out to be degenerate, which will make it impossible to calculate 𝜎(1) due to the lack of an 
inverse matrix for the degenerate Jacobian. To address a problem, the code implements a 
check for Jacobian degeneracy at the first iteration, and if it is degenerate, the identity matrix 
is substituted for it, which corrects the first approximation. 

Newton's method has two stopping conditions. The first is the achievement of the speci-
fied accuracy of the solution, which is determined by the formula: 

√(𝑥(𝑖) − 𝑥(𝑖−1))2 + (𝑦(𝑖) − 𝑦(𝑖−1))2 + (𝑧(𝑖) − 𝑧(𝑖−1))2 < ∆. 

The second stopping condition consists in exceeding the threshold number of steps, 
which indicates that the system does not have a solution. In our case, a threshold value of 100 
steps was experimentally selected. This constant is due to the fact that, according to our ob-
servations, for faceted solids, the corresponding systems are solved on average in 7–10 steps 
(if they have a solution). Thus, the threshold of 100 steps with a margin provides reliable pro-
tection against loss of the solution, and, at the same time, does not greatly overload the GPU 
with unnecessary iterations. 



In order for the user to have the opportunity to view the rendered solid from all sides, a 
model of an interactive orbital camera is implemented. The camera position expressed by 𝑃 
point (which corresponds to the beginning of the segment mentioned in Section 2) is calcu-
lated by the following formula: 

𝑃 = {sin 𝜃 ∙ sin 𝜑 , cos 𝜑 , cos 𝜃 ∙ sin𝜑} ∙ 𝑟, 
where 𝜃, 𝜑 are the polar angles calculated based on the coordinates of the mouse cursor in the 
visualization area, 𝑟 is the radius of the camera's orbit, in our case calculated as twice the 
maximum value of the coordinates of the 𝐴, 𝐵, 𝐶, 𝐷, points, which define a three-dimensional 
simplex for constructing a rendered solid. 

The center of the scene (the point the camera “looks” at) is selected 𝑇 point – the center 
of mass of the solid. For example, for a tetrahedron: 
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The orts of the camera coordinate system are defined as follows: 

𝑘⃗ =
𝑇 − 𝑃

|𝑇 − 𝑃|
, 

𝑖 =
{0,1,0} × 𝑘⃗ 

|{0,1,0} × 𝑘⃗ |
, 

𝑗 =
𝑖 × 𝑘⃗ 

|𝑖 × 𝑘⃗ |
. 

The 𝑄 point corresponding to the end of the segment mentioned in Section 2 is deter-
mined by the formula: 

𝑄 = 𝑃 +
𝑖 ∙ 𝑝𝑥 + 𝑗 ∙ 𝑝𝑦 + 𝑘⃗ 

|𝑖 ∙ 𝑝𝑥 + 𝑗 ∙ 𝑝𝑦 + 𝑘⃗ |
𝑑𝑚𝑎𝑥 , 

where 𝑝𝑥, 𝑝𝑦 are the normalized coordinates of the screen pixel through which the tracing is 

performed (and whose color you want to determine), 𝑑𝑚𝑎𝑥 is the maximum tracing distance 
(in our case, the constant 100 is taken).  

To increase the visual quality of the displayed faceted solid and ensure the perception of 
its three-dimensionality by the user, a Lambertian shading model has been implemented. In 
this case, the 𝑛⃗  normal is calculated as the gradient of the distance function using the differ-
ence scheme: 

𝑑 = {𝛿(𝑃 + 𝑖 ∙ ∆, 𝑄) − 𝛿(𝑃, 𝑄), 𝛿(𝑃 + 𝑗 ∙ ∆, 𝑄) − 𝛿(𝑃, 𝑄), 𝛿(𝑃 + 𝑘⃗ ∙ ∆, 𝑄) − 𝛿(𝑃, 𝑄)}, 

𝑛⃗ =
𝑑 

|𝑑 |
, 

where 𝛿 is the function for determining the distance to a solid on a segment 𝑃𝑄. 
All the calculations described above are performed for each screen pixel in parallel lever-

aging the SIMD paradigm. The results of visualization of faceted solids are shown in Fig. 4 
and 5. 

 



 
Fig. 4. Visualization of the tetrahedron solid in the service environment ShaderToy 

 

 
Fig. 5. Visualization of the prism solid in the service environment ShaderToy 

5. Conclusion 
As can be seen from the results of computational experiments (Fig. 4–5), the proposed 

approach to the visualization of solid geometric models justifies itself to a sufficient extent. 
Rendering performance delivers an image refresh rate of around 60 frames per second, 
matching the refresh rate of today's general-purpose monitors. At the same time, high image 
fidelity is maintained without any visible artifacts. However, when visualizing curvilinear sol-
ids, the appearance of artifacts is still possible. This is due to the fact that Newton's method 
cannot provide sufficient accuracy for the numerical solution of the system of equations in 
that case. Proceeding from this, the prospect of further research is the improvement of the 
method for determining the signed distance function for the visualization of curvilinear geo-
metric solids with the subsequent integration of the developed software solutions into the sci-
entific visualization system SciVi [17-19]. 

The proposed approach to visualization of solid geometric models is primarily oriented to 
application in computer-aided design, solid-state and information (BIM – Building Infor-
mation Modeling) modeling systems. However, given the wide application of three-
dimensional models in various sectors of the economy, after improvement, the proposed ap-
proach can find application not only in mechanical engineering, construction, and architec-
ture, but also in science, medicine, design, education, as well as in advertising, film, and video 
game industry. It seems promising to use the proposed approach to the definition of solid 
models in point calculus to develop a new technology for generating full-fledged volumetric 
images in three-dimensional space by analogy with holographic ones. 
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