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Abstract 
The work provides an overview of methods aimed to the reconstruction of Bidirectional 

Scattering Distribution Function (BSDF) for rough surfaces. The elements with rough surfac-
es are permanently present in our life and widely used in modern optical devices, for exam-
ple, in light guiding plates for display illuminating systems, car dashboards, or luminaires. 
Light scattering by rough surface is an important component in the visual appearance of 
many materials including water, glass, skin, etc. The problem of the rough surface visualiza-
tion is complex and contains many different aspects. Accordingly there are many techniques 
to provide their realistic rendering. In many lighting simulation and optical design tasks it is 
sufficient and more effective to replace real geometry of rough surface by a surface optical 
characteristics expressed via BSDF. So, accurate reconstruction of scattering properties of 
rough surfaces is a significant factor in visualizations tasks and generation of photorealistic 
images. In some cases, BSDF can be just measured. However, in many cases direct BSDF 
measurements are impossible if, for example, it is required to define BSDF inside of the ma-
terial and neither a measuring device detector nor a light source can be placed inside the ma-
terial. So this results in the development of many approaches for BSDF reconstruction. It 
started in the end of the last century with the development of many analytical methods based 
on microfacet models of rough surface such as the Phong, the Ward reflection, the Cook-
Torrance models. Nowadays many direct numerical methods of BSDF reconstruction appear, 
for example, methods based on normals and heights distribution. As a rule, these methods 
use ray tracing to calculate BSDF. Sizes of microroughness can be small, sufficient to raise a 
problem which optics wave or ray is more appropriate here. To answer this and other ques-
tions related to BSDF reconstruction, an investigation of well-known and effective recon-
struct methods was conducted. This paper also presents the study results for eight real sam-
ples with different profile parameters of rough surface. The verification is based on numerical 
comparison with real measured data and visual comparison of images generated using differ-
ent reconstructed BSDF. Finally, the general recommendations are presented about what 
methods and for what applications are more appropriate.  

Keywords: Rough surface visualization, Bi-Directional Scattering Function, surface 
scattering, realistic rendering, ray tracing. 

 

1. Introduction 
Rough surfaces are all around us. When we generate realistic images, the task of visualiz-

ing them arises. Fig. 1 shows examples of such visualizations created by us: frosted glass with 
objects visible through it, and a rough car interior panel. Fortunately, in many lighting simu-
lations and optical design tasks it is sufficient and more effective to replace real geometry of 
rough surface by a smooth surface with certain optical characteristics. The definition of scat-
tering properties for a smooth boundary between two media is a simple task and the light 
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scattering can be easily simulated using Snell’s law of refraction and reflection. However, in 
case of rough boundary the definition of light scattering is more complex and can be ex-
pressed via Bidirectional Scattering Distribution Function (BSDF). BSDF determines output 
angular light transformation (refraction and reflection) in the dependence of input light con-
ditions, angles of the input light. 

 

 
Figure 1: Examples of rough surface visualization 

 
In simple cases, when light scattering by whole plate is only important, the direct BSDF 

measurements may be sufficient. The ordinary way of BSDF measurements for the rough sur-
face is presented on Fig. 2a. The sample, one side of which is rough, is illuminated with a par-
allel light beam under the specific incident directions, then an angular light distribution of 
transmitted light (BTDF - Bi-Directional Transmittance Distribution Function) and reflected 
light (BRDF – Bi-Directional Reflectance Distribution Function) is measured. In other words, 
such BSDF measured for the whole sample works in cases when we can ignore object thick-
ness. The examples of such ordinary BSDF applications (Fig. 2b) may be various diffuse films, 
thin plates, layers. 

 

 
Figure 2: BSDF application in the simplified “one-sheet” and more “solid” models 

 
However, in plenty of cases the direct usage of measured BSDF is impossible. As an ex-

ample we can consider a light guiding plate with rough surface (Fig. 2c). Correct simulation of 
light propagation in this optical system requires BSDF from each side of the rough surface 
that includes BSDF from the material side. The BSDF measurement from material side is im-
possible or very expensive because we cannot place the light source and detector inside of the 
material. Another problem is the significant inaccuracy of BSDF measurements for big illu-
mination angles because of light leakage inside of measured samples, shadowing of sample 
illumination and some other reasons.  

The mentioned problems related to BSDF measurement result in the development of 
many approaches and methods for BSDF reconstruction. One of the main purposes of this 
paper is an analysis and verification of the popular methods of BSDF reconstruction. The pa-
per contains an overview of most prominent approaches and their comparison done on the 
base of real measured samples with rough surfaces. 



2. Overview of BSDF reconstruction methods 
Generally, methods of BSDF reconstruction can be divided into two main groups: 
1. Analytical methods. The analytical methods are based on the theory of physics (optics) 

or empirical formulas. The methods represent rough surface models published by Ward, 
Cook-Torrance, Phong, etc. The main advantages of analytical approaches are high efficiency 
because analytical solutions are fast to calculate. This is important because optimization pro-
cedure is typically used to get parameters of analytical functions describing required BSDF 
shape. The disadvantage of the approaches is their approximation. They use approximate al-
gorithms to describe complex optical effects like a masking or shadowing of the incident light 
illuminating of the rough surface (Fig. 3a, 3b) and a interreflection of light on rough profile 
(Fig. 3c). During BSDF reconstruction this can introduce noticeable inaccuracy for surfaces 
with big roughness. 

2. Numerical methods. These approaches are based on simulation of light propagation 
through models of rough surfaces. In the given paper two main numerical approaches 
are considered which are based on distribution of microfacet normals or heights. These 
approaches are more correct than analytical ones from viewpoint of optical theory but 
require noticeable calculation resources. 

 

 
Figure 3: Masking-shadowing and multiple reflections of light on rough surface 

 
The described classification is not the only one. For example, the methods for BSDF re-

construction can be also divided depending on what optics, geometrical (ray) or wave, is ap-
plied. In our work we investigated all these groups of methods.  

2.1. Analytical methods of BSDF reconstruction 
Most of the methods for defining a light scattering (BSDF) through a rough surface are 

based on the “microfacet” model. In the case of the “microfacet” model rough surface with 
complex geometry is presented with a set of flat smooth surfaces (micro facets), see Fig. 4. 
When boundary (microfacet) is smooth the transmission, reflection can be easily simulated 
using Snell’s and Fresnel laws of refraction and reflection. So it is possible to calculate a gen-
eral light scattering through the rough surface knowing general density distribution of micro-
facet slopes or their normals. One of the earlier attempts to model light reflection from a 
rough surface is described in [1]. It was restricted with reflection light component only but it 
was a basis for developing one of the more well-known microfacet models introduced by Cook 
and Torrance [2]. A lot of different modifications of the microfacet model have been devel-
oped at that time [3-5]. The next developments are related to extensions of reflection “micro-
facet” models with the support of anisotropy, sampling with correct weights, application of 
Backmann distribution [6, 7], and development of alternative sampling methods with fitted 
separate approximations [8].  

 



 
Figure 4: Microfacet presentation of a rough surface 

 
Shlick [9] develops more simple approximation to the Cook-Torrance model with the 

help of rational approximations with the application of the Fresnel formula widely adopted 
nowadays. Ashikhmin and Shirley [10] introduced an anisotropic reflection model on the 
base of Phong microfacet distribution including correct importance sampling. Then an ener-
gy-conserving reflection model [11] is introduced. It is derived from arbitrary microfacet dis-
tributions, though this formulation involves numerically estimating integrals without closed-
form solutions. 

Microfacet models are widely used in computer graphics; experimental data appear for 
verification of scattering models. For example, different models of BRDF reconstruction 
(“Ward”, “Ward-Duer”, “Blin-Phong”, “Cook-Torrance”, “Lafortune et al”, “He et al”, “Ashi-
khmin-Shirley”) are compared with real measurements in [12]. A set of development is relat-
ed to the derivation of the refraction part of scattered light [13]. There are investigations that 
take into account thin effects such as the shadowing masking, multi-inter-reflections on ele-
ments of rough surface, using of importance sampling [2, 14, 15].  

The reflection models based on wave optics are proposed in [16]. The method can simu-
late a wider range of surface effects than microfacet models. However, wave approaches are 
much more expensive to calculate and as a rule very approximate in support of thin effects as 
a multi reflection on profile with rough surfaces. 

The numerical simulations of transmissions models are performed in [17-20, 37]. The 
“GGX” microfacet model was introduced in [21]. It is an improved variant of the Cook-
Torrance microfacet model supporting reflection as well as refraction and shadowing-
masking. The [21] work contains numerical data comparison of different analytical models 
and demonstrates a lot of advantages relative to other analytical methods of BSDF recon-
struction of a rough surface. The “GGX” model is considered one of the most accurate, flexible 
and wide-used analytical approaches. It supports both reflection and refraction components, 
masking-shadowing, and importance sampling and shows more accurate output in relation to 
the Cook-Torrance model [21].  

So, the “GGX” model is selected for examination in our paper as representative of the an-
alytical group of methods. Typically, an analytical model is represented with two base func-
tions. The first function, denoted as D(m), is a microfacet distribution function. It describes 
the statistical distribution of surface normal m over microsurfaces. The second bi-directional 
function, denoted as G(i, o, m), describes what fraction of the microsurface with normal m is 
visible in both directions i and o (Fig. 5). Typically, the shadowing-masking function has rela-
tively little influence on the shape of the BSDF except for near grazing angles or for very 
rough surfaces but is needed to maintain energy conservation. 

 



 
Figure 5: Micro vs. macro surface 

 
The bi-directional function G(i, o, m ) can be approximated with two omnidirectional 

shadowing terms: 
𝐺(𝑖, 𝑜, 𝑚)  𝐺1(𝑖, 𝑚) ∗ 𝐺1(𝑜, 𝑚) (1) 

where G1 is derived from the microfacet distribution D as described in [14, 15]. 
We used the “GGX” model with the following microfacet distribution and masking shad-

owing function D(m), parameter 𝑔 specifies surface roughness: 

𝐷(𝑚) =
𝑔

2+(𝑚𝑛)

𝜋𝑐𝑜𝑠4𝑚(𝑔
2 + 𝑡𝑎𝑛2𝑚)

2 (2) 

and omnidirectional masking-shadowing function: 

𝐺1(𝑣, 𝑚) = + (
𝑣𝑚

𝑣𝑛
)

2

1 + √1 + 𝑔
2𝑡𝑎𝑛2𝑣

 (3) 

where 𝑚 is the angle between m and n, 𝑣 between v and n, and +(𝑎) is the positive 
characteristic function (which equals one if 𝑎 > 0 and zero if 𝑎 ≤ 0). v equals either to i or o 
vectors (Fig. 5). Note the function is rather similar to the well-known Beckmann distribution 
used in the Cook-Torrance model.  

So the process of BSDF reconstruction consists of the definition of the parameter 𝑔- de-

gree of surface microroughness for which generated BSDF gives more close results to meas-
urement data. It will be considered in the next chapters in more detail.  

2.2. Numerical methods of BSDF reconstruction 

Nowadays with increasing of computer’s power new approaches for BSDF reconstruction 
have been developed in [22, 23, 25, 26]. Part of them is based on pure numerical methods in 
which a BSDF is calculated by ray tracing simulation through an explicit geometry model of 
rough surface. The method based on the normal density distribution of rough surfaces is pro-
posed in [26, 27]. In this method the micro-relief is simulated with the help of distribution of 
normals represented with an analytical function having a set of parameters defined with the 
help of the optimization process. The process of BSDF calculation is presented in Fig. 6. 

 

 
Figure 6. “Normals” method of BSDF reconstruction 

 
The approach is maximally natural and transparent. To calculate BSDF the flat boundary 

presenting a rough surface is illuminated with parallel light from both sides of the boundary. 



Typically, stochastic (Monte Carlo) ray tracing is used. Each time ray hits the boundary, nor-
mal is defined with a probability according to analytical function – normal density distribu-
tion. Then ray reflection, refraction is defined according to Snell’s law. The transformed light 
is registered with detectors which finally form resultant BSDF. The main problem here is the 
definition of analytical function specifying normal density distribution and its parameters. In 
[27] it was proposed to use two analytical functions like Gauss and Cauchy (Fig. 7): 

𝐹𝑔𝑎𝑢𝑠𝑠() =  𝑒𝑥𝑝
−

|−𝑜|𝑛

2𝑛  (4) 

𝐹𝑐𝑎𝑢𝑐ℎ𝑦() =
𝑛

( − 𝑜)𝑛 − 𝑛 (5) 

where  is an angular variable specifying angle of surface normal,0 is zero angle specify-
ing the position of function maximum and it should be equal to zero for most of cases for 
rough surfaces with roughness distribution close to normal. So, these functions are used in 

our work. The two main parameters  and n specify shape of function of normal density dis-
tribution and can be defined with the help of the optimization process, which is presented in 
the scheme in Fig. 7 and consists of several main steps: 

1. The first step includes an input of measured BSDF and other sample parameters af-
fecting light propagation like refractive index and thickness. 

2. An objective function for optimization and parameters of illumination and observa-
tion to be used in light simulation are defined at the second step. The measured BSDF of 
whole sample can be used directly as objective function, sometimes it is recalculated to ordi-
nary angular intensity distribution for simplification. The detector parameters (angular, spa-
tial resolution, distance to measured surface) during simulation are chosen maximally close 
to parameters of real detectors used in measurements. As a rule only small illumination an-
gles close to normal of measured sample are used during optimization. It is done because the 
accuracy of measurements decreases significantly for incident angles far from normal direc-
tion. 

3. During the third step an explicit model of the sample with rough surface is generated 

for normal density distribution for some initial parameters  and n.  
4. Most of modern light simulation software can simulate light propagation through 

boundary between two dielectric media specified with normal density distribution. So there is 
no problem to calculate angular light distribution for sample model defined in the previous 
optimization step. 

5. An optimization criterion is defined as root mean square deviation (RMSD) between 
measured and simulated angular intensity distributions. 

6.  An optimization criterion (RMSD) calculated on the previous step together with cur-

rent , n parameters transfer to optimizer. An external optimizer of SCIPY library with “Sim-
plex” algorithm was used in our work.  

7. The optimizer makes decision to continue optimization process (7.1 in Fig. 7) or to in-
terrupt it (7.2 in Fig. 7) in case the optimization goal is achieved or due to another reason (for 
example, maximal number of optimization steps is achieved). If the goal is achieved a final 
model of rough surface based on optimized normal density distribution is generated. In case 
of simulation there is no problem to place detectors and light sources anywhere including in-
side of sample material and calculate light scattering from both sides of rough surface, i.e. to 
calculate BSDF of rough surface.  

 



 
Figure 7. Optimization procedure for “Normals” method of BSDF reconstruction 

 
The optimization procedure (Fig. 7) was used to reconstruct BSDF with “Normal” numer-

ical method. More details are presented in [27]. The investigations show the “Normal” meth-
od is very effective from viewpoint of calculation speed and fast convergence in optimization 
procedure during BSDF reconstruction. However, it has evident drawbacks too, namely, it 
does not support interreflections and masking-shadowing. 

Another numerical approach is based on height density distribution and described in 
[28]. There is some similarity of the ”Heights” and the “Normals” methods. However, an ana-
lytical function is used here for another goal: to define 2D height distribution H(x, y). 

𝐻(𝑥, 𝑦) = 𝑃𝑟𝑜𝑏(𝐹) (6) 
 

 
Figure 8. Definition of “Height” distribution 

 
It shows regular grid of points with uniform steps along x and y axes (Fig. 8). Each point 

in the grid presents a node of microprofile. To define profile height in each node with (x, y) 
coordinates analytical probability function of one or several parameters can be used. In other 
words, height in each node is defined according to a probability defined according to normal 



(Gauss) or some another analytical function specifying height density distribution. In our 
work two analytical functions were used for “Heights” approach – Gauss and Cauchy: 

𝐹𝑔𝑎𝑢𝑠𝑠(𝑧) =  𝐻𝑚𝑎𝑥𝑒𝑥𝑝
−

|𝑧−𝑧𝑜|𝑛

2𝑛  (7) 

𝐹𝑐𝑎𝑢𝑐ℎ𝑦(𝑧) = 𝐻𝑚𝑎𝑥

𝑛

(𝑧 − 𝑧𝑜)𝑛 − 𝑛 (8) 

Note that formulas (7), (8) are similar to (4), (5) used for “Normal” approach but use z 
coordinate instead of angular  variable, which is defined in the range [0, Hmax] and specifies 
heights distribution. 

Both functions depend on four parameters (,  Hmax, n and z0). It is rather substantial 
number of parameters which can complicate process of optimization convergence. However 

experiments show that in most of the cases the only  (sigma) is sufficient, “n” (degree) can 
slightly improve convergence in some cases. Hmax can be set to 1 in most of the cases if to set 
step between nodes of profile grid around the same unit value. z0 is supposed to be zero (den-
sity of heights is symmetrical relatively to Hmax). z is in range [0, Hmax]. So 𝐻(𝑥, 𝑦) defines dis-
tribution of height density.  

According to formula (6-8) height distribution of microprofile can be defined and used 
for profile geometry generation (Fig. 9). 

 

 
Figure 9. A schematic appearance of microprofile based on analytical heights distribution: 

(a) – perspective view; (b) – top view 
 

The definition of optimal parameters specifying height distribution is fulfilled with opti-
mization procedure similar to “Normals” methods (Fig. 7). The only difference is an explicit 
model of sample where rough surface is simulated with a geometry based on heights distribu-
tion instead of simplified normal density distribution. At present, most of the modern optical 
software, such as SPEOS, LightTools, Lumicept [35], for example, allow calculating such mi-
crogeometry, so BSDF can be calculated without a problem.  

Note that the main advantage of the “Height” method is support of all effects: interreflec-
tions and shadowing-masking. The process of BSDF reconstruction with this method is more 
complex relatively to “Normals” because the number of parameters used in reconstruction is 
increased. In the “Heights” method the Hmax parameter defining the maximal scale of micro 
profile is added to parameters specifying the shape of the height distribution function, name-

ly parameters  and n (formulas (4) and (5)). 

2.3. Methods of BSDF reconstruction based on wave optics 

Most of the methods described in the previous chapters use ray optics for simulation of 
light propagation. However, an application of geometrical optics can be inaccurate. A rough 
surface is considered as a combination of microelements and their size varies from great to 
small values, up to sizes comparable with wavelength. Application of geometrical optics theo-
ry can result in the noticeable inaccuracy of reconstructed BSDF. Another problem of the ge-



ometrical approach is the parasitic influence of measurement noise in case of measured 
height distribution.  

The main problem of wave methods is their extreme complexity. The precise wave meth-
ods cannot be applied practically due to the complexity of micro-surface geometry. So an ap-
proximate wave solution should be used for BSDF reconstruction. As an example, one of 
them is described in [16] but it is related to the reflection model only. The more well-known 
and more usable method to reconstruct BSDF for rough surfaces is based on the Kirchhoff 
approximation. The method is built on a simple FFT (Fast Fourier transform) based proce-
dure. A more detailed description can be found in [29-34]. The BSDF reconstruction based on 
the Kirchhoff approximation is developed for both reflection and transmission components 
and was examined in our work.  

The Kirchhoff method should be applied to the surfaces containing smooth roughness 
(without breaks) or consisting of enough great facets. The local condition of applicability 
looks like this: 

2𝜋𝑅𝑐𝑜𝑠3 ≫  (9) 

where  is a wavelength (in the medium where scattered light propagates), R is a "typical" 
curvature radius of roughness,  is a local angle of incidence.  

The wave-based approach does not consider the multiple reflections. The limitation can 
be expressed in form: 

𝑅𝑞 

𝑙
≪  (10) 

where 𝑙  is a characteristic roughness length, 𝑅𝑞 is RMS of height deviation from a flat 

surface. 
The method also does not take into account shadowing and masking (shadowing is for 

occlusion of illumination direction, masking is for occlusion of observation of one). This limi-
tation can be expressed as: 

𝑐𝑜𝑠 ≫
𝑠

𝑙
 (11) 

where  is an illumination/observation angle that is counted from a normal to a flat sur-
face. In the wave model scattering is calculated for the infinite periodic surface. If there is no 
seamless conjugation between opposite sample edges, an artifact scattering by periodic con-
jugation can arise. It is negligible for a large relief sample but can be quite serious for a small 
one. The calculations are done for non-polarized illumination. 

3. Verification of the BSDF reconstruction methods 

3.1. Set of samples for verification 
Before describing the samples to be used in the investigation let’s consider a profile of 

rough surface, Fig. 10. 
 

 
Figure 10. Parameters of microroughness 

 



Several wide-used parameters describe a profile rough surface. These parameters will be 
used for the description of measured samples of rough surfaces, so shortly consider them. 
The first parameter Ra is the most common one and is calculated using the formula (12): 

𝑅𝑎 =
1

𝑛
∑|𝑦𝑖|

𝑛

𝑖=1

 (12) 

𝑅𝑎 is an arithmetical mean deviation of the assessed profile. The next parameter 𝑅𝑞 is a 

root mean square 

𝑅𝑞 = √
1

𝑛
∑ 𝑦𝑖

2

𝑛

𝑖=1

 (13) 

The next two parameters specify average values of valleys (heights below the mean line) 
and ledges (heights above the mean line) over the assessed profile, Rv and Rp correspondent-
ly: 

𝑅𝑣 =
|min 𝑦𝑖|

𝑖
;     𝑅𝑝 =

max 𝑦𝑖

𝑖
 (14) 

The next parameter is the most trivial. Rz is maximal profile height and is calculated us-
ing parameters from (14): 

𝑅𝑧 = 𝑅𝑣 + 𝑅𝑝 (15) 
One more well-known parameter is RzJIS or Rz5. It is related to the Japanese industrial 

format. It is based on the five highest peaks and lowest valleys over the entire sampling length 
(l in Fig. 10). 

𝑅𝑧5 =
1

5
∑ 𝑅𝑝𝑖

5

𝑖=1

− 𝑅𝑣𝑖 (16) 

And the last two advanced parameters present Rsk – skewness and Rku – Kurtosis: 

𝑅𝑠𝑘 =
1

𝑛𝑅𝑞3
∑ 𝑦𝑖

3𝑛
𝑖=1 ; 𝑅𝑘𝑢 =

1

𝑛𝑅𝑞4
∑ 𝑦𝑖

4𝑛
𝑖=1  (17) 

The eight samples made of acryl with refractive index = 1.49 are selected for investiga-
tion. One surface in each sample has roughness and another is smooth. Two types of meas-
urements are fulfilled for all samples: 

1. A height distribution was measured with the precise Taylor Hobson’s profilometer. 
2. Light transmission distribution was measured with goniophotometer GP-200 [35, 36]  

by Murakami Color Research Laboratory, see Fig. 11. 
 

 
Figure 11. Input measured data of investigated samples 

 
The parameters of all eight profiles have been calculated based on measured height dis-

tributions and using formulas (12)-(17). These parameters are combined in Table 1. The #1-
#8 in the first line are sample identifiers. Additionally, the second and third rows of the  table 
1 present size of the measured fragment on the sample and resolution of measurements – 



number of measured profile points along with both x and y directions. The step between 
measurement points was constant. 

  
Table 1. Profile parameters of measured samples 
Param./ 
Samp.. 

#1 #2 #3 #4 #5 #6 #7 #8 

Size (mm x 
mm) 

0.37x0.37 0.95x0.95 0.95x0.95 0.95x0.95 0.37x0.37 0.95x0.95 0.95x0.95 0.95x0.95 

Resolution 1024x1024 1333x1333 1330x1330 1332x1332 1024x1024 1332x1332 1`3x1333 667x677 
Ra (m) 0.178 0.456 0.668 0.738 1.170 2.038 2.596 10.724 

Rq (m) 0.232 0.581 0.866 0.956 1.466 2.669 3.308 13.456 

Rv 1.754 2.908 5.870 5.400 5.726 13.731 16.889 33.913 
Rp 0.594 1.613 3.380 2.369 3.588 7.817 7.847 40.7834 
Rz 2.340 4.521 9.251 7.769 9.314 21.548 24.736 74.697 
Rz5 2.329 4.519 9.235 7.762 9.313 21.542 24.727 74.582 
Rsk -0.786 -0.700 -0.839 -0.928 -0.560 -0.643 -0.658 0.012 
Rku 5.156 3.654 4.482 4.492 3.275 4.279 3.920 2.813 

 
The images of investigated profiles are presented in Fig. 12. For convenience the profiles 

in Fig. 12 are placed in order of their root mean square (Rq) increasing from the left to the 
right and from up to down. 

 

 
Figure 12. The appearance of measured profiles 

 
GP-200 goniophotometer [35, 36] was selected for measurements because it has very ad-

vanced characteristics, such as angular resolution = 0.6, very small angular step = 0.1 and 

wide range of observation directions = 90. The high angular resolution is very important in 
case of our investigation because part of measured samples has very small roughness, compa-
rable with wavelength, so angular transmission is supposed to have a very narrow shape. The 

measurements of transmission are done for five angles of incident light direction = 0, 15, 

30, 45 and 60 in the single plane of light incidence. The goniometer GP-200 outputs data 
in the relative shape calibrated to measurements without sample. So, for the correlation of 
measured and simulated data, the same calibration process is fulfilled in simulation, as it is 
explained in [31]. 

3.2. Set of methods to be verified 

The first two methods selected for verification are based on the measured heights distri-
bution and fulfilled in the Lumicept lighting simulation software [35]. The software has spe-
cial instruments for direct simulation of rough microgeometry on the base of numerical 
height distribution, apart from it has physically accurate Monte-Carlo ray tracing and BSDF 
generator allowing to calculate BSDF based on ray as well as wave optics (Kirchhoff approxi-
mation).  

The first method is based on ray optics. It is denoted as “Measured_Heights (ray)”. In 
the given method explicit geometry is created as the boundary between air medium with re-
fractive index = 1 and dielectric medium with refractive index = 1.49 (the refractive index of 

sample material). The boundary is illuminated under different incident directions from 0 to 

85 with parallel light from both sides: from the air and dielectric. Ray propagation through 



the rough surface is based on Fresnel, Snell laws. The detectors are placed above and below 
the boundary of the rough surface and detect transmitted and reflected light. Then BSDF is 
generated based on calculated data. It supports all complex effects such as interreflections on 
microrelief, masking and shadowing explained in the second chapter. The main restriction of 
the method is an applicability of ray optics. It can be inaccurate for the sample with small 
roughness (with sizes close to the wavelength). Another possible drawback of the method is 
also related to ray optics. It is the high sensitivity of generated BSDF to the quality of meas-
urements. The different steps between measured nodes or noise can result in a noticeable dif-
ference in BSDF shape. 

The second method is denoted as “Measured_Heights (wave)”. It uses measured 
sample profile, i.e. height distribution, too. However, light propagation is realized here ana-
lytically based on Kirchhoff approximation. The disadvantages of the approach are listed in 
chapter 2.3 above. 

It should be pointed out that measured profiles are not used directly in this investigation. 
To minimize possible errors related to the quality of height distribution measurements, appli-
cation of ray or wave optics, and other possible reasons optimization procedure is run for 
each profile. It is explained in [26] and similar to optimization procedure presented for 
“Normals” approach in Fig. 7. The purpose of the optimization is to obtain the transmitted 
light distribution maximally close to the measured one. And parameters of optimization are 
scaling and filtration of microrelief. The scaling allows to increase/reduce microroughness 
and filtration allows reducing measurement noise. These ways of profile modification are pre-
sented in Figure 13. 

 

 
Figure 13: Microrelief modification 

 
The verification of the next three methods is the main goal of this work. They do not re-

quire measurements of height distribution which can be expensive or simply not available. 
The method denoted as “GGX” was selected as the best representative of analytical approach. 
A utility was created to generate BSDF based on the analytical formulas (2) and (3). To define 
an optimal parameter of roughness (𝑔 according to formulas (2) and (3)) an optimization 

procedure, similar to the one presented in Fig. 7 was executed. The optimization goal was to 
obtain light transmission distribution maximally close to measurements. 

The generation of BSDF with two numerical approaches denoted as “Normals” and 
“Heights” is very similar to “GGX” and is explained in chapter 2.1 and in [31, 32] in more 
details. The parameters to reconstruct normal and heights distribution are defined with an 
optimization procedure with an objective function to obtain maximal closeness to measured 
transmission.  

So, finally, we have five methods to be verified: two based on measured profile and angu-
lar sample “Measured_ Heights (ray)”, “Measured_ Heights (wave)” and three meth-
ods based only on angular sample transmission “GGX”, “Normals” and “Heights”. 



3.3. Visual verification of methods 

Comparison of measured versus simulated light transmission through a plate with rough 
surface is used for verification of different BSDF reconstruction methods. However, such 
comparison can be not sufficient. The BSDF of rough surface can have complex shape and 
even small inaccuracy in its generation can result in defects visible in the image, appearance 
of some artifacts. Especially it can be noticeable if BSDF is attached to complex curved objects 
which are illuminated under grazing angles. So, it is also preferable to verify how BSDF sam-
ples are visualized under some realistic conditions.  

A special model aimed at visualization was prepared, see Fig. 14. The scene presents a vir-
tual model of a special measuring box JUDGE-II by X-Rite [39]. It has surfaces close to dif-
fuse and several luminescent tube lamps emulating daylight. The several objects: a plate, a 
sphere and a torus are placed into the measuring box. The reconstructed BSDF is attached to 
the external surface of the test objects. Internal surfaces are simulated as ideally smooth and 
have perfect Fresnel properties. The medium of all objects has the refractive index = 1.49, 
which corresponds to measured samples.  

 

 
Figure 14: Scheme for visualization 

 
The scene is observed at a finite distance with a special sensor emulating the human eye 

or camera. The image is generated with the help of simple forward Monte Carlo ray tracing 
technique in Lumicept [35]. Although it is not the most effective tool nowadays from view-
point of efficiency and calculation speed, and generated images, as a rule, contain noise, how-
ever it is a more reliable and safe tool because of its simplicity.  

4. Results 
The results of the simulation are presented in two variants: 
1. As graphs with angular distribution of transmitted light intensity. A special scene to 

simulate the characteristic as precisely as possible has been prepared, which is maximally 
close to the measurement scheme of GP-200 goniophotometer [31]. The simulation was done 
for normal incident direction of parallel light in one plane corresponding to the plane of light 
incidence (“sigma” = 0deg). All six graphs (one measured with GP-200 + all five reconstruct-
ed methods) are combined into the single graph picture. 

2. As images generated as it is specified in section 3.3. The images are generated with the 
help of simple forward Monte Carlo ray tracing renderer in Lumicept simulation system [35]. 
The simulation is fulfilled for all five methods of BSDF reconstruction explained in section 
3.2. 

Figures 15 and 16 present graphs of angular intensity distribution of transmitted light for 
normal incident direction (sigma = 0deg). More results for other incident directions are pub-
lished in [40]. 

 



 
Figure 15: Angular intensity distribution of transmitted light for samples #1, #2, #3, and #4. 

 

 
Figure 16: Angular intensity distribution of transmitted light for samples #5, #6, #7, and #8 

 



Fig. 17 presents images generated for samples #1-#4. Each row in the figure presents the 
same simulated sample and rows presents different approached of BSDF reconstruction. Fig. 
18 presents samples #5-#8. 

 

 
Figure 17: Images for samples #1-#4. 

 

 
Figure 18: Images for samples #5-#8. 

 
The general numerical difference (error) between measured and simulated angular in-

tensity distribution of transmitted light is estimated as root mean square deviation (RMSD) 
reduced to the maximal value of measured intensity in relative shape (*100%): 

𝑒𝑟𝑟𝑜𝑟 =
√∑ (𝐼𝑚𝑖 − 𝐼𝑠𝑖)2

𝑖

𝑛
𝐼𝑚,𝑚𝑎𝑥

100% 
(18) 

where 𝐼𝑚 is the measured intensity and 𝐼𝑠 is calculated. Index i means the value of the in-
tensity defined for a specific direction of illumination and observation. All observation direc-
tions (in the range of ±90deg with step = 0.1deg) and all illumination directions (sigma = 0, 
15, 30, 45 and 60deg) are used in the calculation of the difference.  



The value of “error” for all samples and all BSDF reconstruction methods is combined in 
Table 2. The best result (the lowest error) is highlighted (bolded) for each sample.   

 
Table 2. Error for different BSDF reconstruction methods  
Sample name Measured_Heights 

(ray) 
Measured_heights 
 (wave) 

Analytical 
(“GGX”) 

Numerical 
(“Normals”) 

Numerical 
(“Heights”) 

Sample #1 

 (Rq = 0.23m) 

1.85% 1.83% 3.07% 2.94% 3.15% 

Sample #2 

 (Rq = 0.58m) 

1.45% 1.64% 1.91% 1.81% 1.90% 

Sample #3 

 (Rq = 0.87m) 

1.29% 1.33% 2.02% 1.57% 2.37% 

Sample #4 

 (Rq = 0.96m) 

0.85% 1.07% 2.07% 1.79% 1.96% 

Sample #5 

 (Rq = 1.47m) 

1.51% 3.75% 2.06% 1.69% 2.04% 

Sample #6 

 (Rq = 2.67m) 

2.80% 4.60% 3.03% 1.27% 2.68% 

Sample #7 

 (Rq = 3.31m) 

2.93% 4.14% 3.19% 1.68% 2.75% 

Sample #8 

 (Rq = 13.46m) 

5.56% 27.22% 3.86% 5.23% 3.82% 

5. Conclusions 
As we can see from the results in Table 2 the most of the investigated methods work well. 

The exception is “Measured_Heights (wave)” based on Kirchhoff approximation, where we 

see a noticeable error for samples #5-#8 with Rq > 1m. This is also clearly seen on graphs 
(Fig. 16). It is quite predictable analyzing the restrictions of the Kirchhoff approximation 
based method listed in chapter 2.3. So, the “Measured_Heights (wave)” method cannot be 

recommended for samples with roughness Rq > 1m. From the other side, analyzing graphs 
for samples #1-#3 (Fig. 15), the wave optics approach gives more close results in the shape of 
angular distribution of transmitted light. Moreover the wave approach almost does not re-
quire optimization of measured height distribution unlike the “Measured_Heights (ray)” 
based on ray optics. It can be explained with the big sensitivity of the ray approach to the 
quality of microrelief measurements (noise, step between measured nodes).  

The analytical “GGX” method (the improved Cook-Torrance model) works reasonably for 
all samples. In the case of “GGX” the noticeable inaccuracy appears only for samples with big 
roughness. So, considering its simplicity because only one parameter manages BSDF shape 
and analytical type of calculation, the method can be recommended for modeling rough sur-
faces with average microroughness. 

Comparison of methods based on measured height distribution (“Measured_Heights 
(ray)” and “Measured_Heights (wave)”) for samples with small microroughness versus all 
other methods demonstrates that agreement between measured and simulated intensity is 
better for methods which use measured geometry of microroughness, especially for big illu-
mination angles. Both numerical methods show good agreement with measurements practi-
cally for all examined samples. The numerical “Normals” method is slightly better than nu-
merical “Heights” in the area of general transmission estimation, has better convergence dur-
ing optimization, and is simpler in calculation. Surprisingly, “Measured_Heights (ray)” works 
not well for sample #8 (Fig. 16, Table 2). One of the possible reasons is too small measure-
ment area of height distribution, so it is just not representative. 

In general the methods based on measured height distribution are supposed to be more 
precise because the real profile geometry is used during ray transformation. In the case of the 
“Measured_Heights (ray)” method the interreflection, shading, and masking effects are sup-
ported in the whole volume because it uses the Monte Carlo ray tracing. This method can suf-
fer from the restrictions of ray optics, inaccuracy of measurements of height distribution or 



measured fragments are not representative. However, these drawbacks are overcome with 
modification of microrelief during optimization procedure, at least partially. Thus the “Meas-
ured_Heights (ray)” method can be considered as reference (“etalon”) one in visual compari-
son with other methods, so all other methods are compared to it.  

During visual comparison (Fig. 17 and 18) we see the images of the flat plane with average 
illumination and observation inclination are similar to each other. The situation with the 
curved object is more complicated. The images generated with the analytical “GGX” method 
are similar to the reference (etalon) image in the case of small and average microroughness. 
The effect of “a dark ring in the sphere” is absent for any images created with the “GGX” 
BSDF, however the curved objects look darker for samples with big roughness. Likely the en-
ergy conversation works not so well in approximations of analytical methods for samples with 
noticeable microroughness. The numerical “Normals” approach generates quite good images 
for samples #1-#4 (Fig. 17) but images for rougher samples #5-8 (Fig. 18) have noticeable ar-
tifacts like bright edge ring in the sphere. The reason for the effect is evident: the approach 
does not support interreflection, masking, and shadowing. From the viewpoint of visual ap-
pearance the numerical “Height” method shows the best results (most close to the etalon im-
ages) for all samples.  

Summarizing all simulated data we can recommend the numerical “Heights” distribution 
method as more accurate in case the precise simulation is required and there are no meas-
urements of microrelief geometry. In case of rather small roughness the analytical “GGX” or 
the numerical “Normals” can be sufficient. 
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