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Abstract 
Studying the neurophysiological aspects of human cognition reveals the brain activity 

patterns, which are the key for objective assessment of human situational behavior. This, in 
turn, brings new possibilities for both industry and humanities. Industry gains a new way of 
human-computer interaction based on the brain wave analysis that allows controlling 
computers by mental activity. The humanities like psychology, sociology, political science, 
and linguistics can utilize the brain activity patterns during experiments to measure and 
classify reactions of informants to different modelled situations thereby increasing the 
precision and objectivity of research results. One of the most convenient ways to monitor 
brain activity is the non-invasive electroencephalography (EEG). To conduct the EEG-based 
research, stimuli representation tools are required as well, which should support the 
synchronization mechanisms with the EEG hardware. In spite of many existing software 
platforms devoted to conducting EEG-based experiments, high-level versatile tools are badly 
needed by scholars, especially the ones who do not have much experience in programming, 
signal processing, and hardware management.  

In this paper, we propose an adaptable ontology-driven toolchain for conducting EEG-
based neurophysiological experiments applied to various scientific domains including digital 
humanities and computational linguistics. This toolchain provides a high-level graphical user 
interface that does not require special IT skills for customization. By modifying the 
underlying ontologies, this toolchain can be easily tuned to the specifics of particular 
experiment setups, as well as integrated with different third-party EEG hardware and signal 
processing software. Herewith, the toolchain’s core requires no source code modifications.  

The high-level graphical user interface of the toolchain provides the user with a data flow 
diagram (DFD) editor that enables defining the particular data processing pipeline in an 
intuitive way instead of programming the data processing from scratch. This solution is built 
upon our ontology-driven visual analytics platform called SciVi. In the present work, new 
SciVi capabilities are introduced, which allow this platform to be utilized for conducting 
neurophysiological experiments. The main new features cover the representation of audio-
visual stimuli, as well as retrieving, processing, and analyzing the EEG data.  

Using the approach proposed, we successfully composed the particular toolchain 
incorporating medical-grade EEG device EBNeuro Be Plus LTM, related calibration, data 
acquisition, and visualization methods along with such data processing algorithms as Linear 
Discriminant Analysis, Common Spatial Patterns, and Power Spectral Density. This 
particular toolchain was utilized to conduct preliminary neurophysiological experiments 
related to discrimination of brain activity by reading words with certain linguistic features in 
three different tasks: visual stimuli vs their absence, meaningful stimulus vs placeholder, and 
transitive verb vs intransitive verb. Brain activity patterns for some of the tasks were 
obtained. 

Keywords: Ontology Engineering, Stimulus Representation, Brain-Computer Interface, 
EEG, Visual Analytics.  
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1. Introduction 
EEG is a non-invasive method to study brain activity measuring the electrical 

potentials on the scalp skin. EEG requires a headset with electrodes, a hardware 
amplifier, an analog-to-digital converter, and special software tools to process the 
received digitized signals. Traditionally, EEG relates to healthcare leveraging brain 
injury diagnostics, as well as to neurophysiological research that targets the discovery 
of the physiology behind human cognition. Currently, with the evolution of digital 
signal processing, EEG techniques enter the area of human-computer interaction, 
pushing the development of modern brain-computer interfaces (BCIs). As a result, in 
the last decade, several hardware and software platforms have been developed to 
conduct EEG-based research and analyze its results. However, the common problem 
of the most popular solutions is low-level adaptability. This means one should 
manually reprogram individual modules of existing platforms, or create ad-hoc 
software (and sometimes even hardware) adapters to build an EEG data acquisition 
pipeline for a particular experiment.  

In the present work, we tackle this problem by proposing a unified ontology-
driven hardware and software systems, which enable the representation of auditory 
and visual stimuli along with recording, processing, and visual analysis of EEG data. 
This system relies on the SciVi client-server visual analytics platform 
(https://scivi.tools) developed in our previous work [1]. This platform consists of an 
extensible set of plugins managed by means of a SciVi knowledge-driven mechanism. 
In the knowledge base, ontological descriptions of the plugins are stored. The built-in 
ontology reasoner traverses the SciVi ontologies to automatically generate a 
graphical user interface and interoperation interface for each plugin, as well as 
manages the invocation of the plugin’s executable modules and distributes their 
working process across the available computing resources in the network. 

SciVi platform provides two levels of adaptation to the particular data mining 
tasks. The first adaptation level is available for the platform administrator, who 
extends the SciVi ontologies and thereby adds new plugins implementing new data 
analytics methods. This is the way SciVi is adapted to solving tasks in particular 
application domains. The second adaptation level is available for the end users, who 
declare a particular data mining pipeline using visual DFD-based programming 
language. Composing a flow chart of available operators (each one corresponds to the 
particular SciVi plugin) and data links, end users can implement particular data 
extraction, transformation, and load (ETL) algorithms, as well as related data 
filtering and visualization steps. In this way, SciVi is adapted to solving concrete data 
analysis problems taking into account specifics of the application domain. 

The present work is devoted to new capabilities of the SciVi platform ensuring 
audio-visual stimuli representation in EEG-based BCI experiments and visual 
analytics of their results. 

2. Key Contributions 
The key contributions of the work reported are the following: 
1. Introducing a new method for integrating stimuli presentation platforms with 

experimental environments in a unified way by the means of ontology engineering. 
2. Implementing the method proposed by creating a particular pipeline for 

neurophysiological research within a digital humanities framework. 
3. Presenting a new way to compose and control a BCI experiments pipeline with 

the help of an ontological description of the neural interface used.  

https://scivi.tools/


3. Related Work 
Thanks to the comprehensive review of current status, challenges, and possible 

solutions of EEG-based brain-computer interface provided by M. Rashid et al. [2], 
here we present only a short review of the most widely acknowledged and popular 
free/open-source and commercial EEG-based BCI systems. 

BioSig [3] (http://biosig.sourceforge.net/) is one of the oldest MATLAB-based 
tools for building BCI-enabled applications and conducting neuroscientific studies. It 
has a very wide set of available data processing algorithms, but it only provides very 
basic visualization methods via its SigViewer subproject 
(https://github.com/cbrnr/sigviewer) and it is also designed for offline data analysis. 

Another very distinguished platform for EEG analysis is BCI2000 [4] 
(https://www.bci2000.org/). It is a highly modular and robust cross-platform 
solution for data collection, signal acquisition, and stimuli presentation in real-time. 
It supports a wide range of EEG devices, has very good documentation, and a 
welcoming community. However, it lacks modern signal processing and machine 
learning algorithms and is designed more towards providing an “out-of-the-box” 
experience for typical scenarios. 

OpenVibe [5] (http://openvibe.inria.fr/) is a relatively new tool for neuroscience 
experiments and is geared towards non-programmers. It has a modular architecture 
and provides the user with DFD-like diagrams to build the experiments pipeline. 
OpenVibe is very user-friendly both in terms of user interface and documentation 
and supports a wide range of hardware. But it also lacks sophisticated adaptive signal 
processing and machine learning methods, and it is very hard to extend it due to its 
complex architecture. It is written in C++; the two main platforms it targets are 
Windows and GNU/Linux. 

g.BSanalyze (https://www.gtec.at/product/gbsanalyze/), just as BioSig, is also a 
MATLAB plugin that allows the user to analyze recorded biosignal in a highly 
customizable and flexible interface, featuring many advanced algorithms. It is a 
commercial solution though and is a part of a complete “turnkey” solution for 
deploying a neuroscientific laboratory. It is also an offline solution. 

BCILAB [6] (https://github.com/sccn/BCILAB) is also an Octave/MATLAB 
toolbox for conducting neuroscientific studies. It has one of the largest collections of 
signal analyzing and processing methods available, supports both online and offline 
modes, and can easily be extended with plugins. But it has not been actively 
developed since 2017, and it has a very complex internal architecture, making it quite 
tough to maintain on your own. 

FieldTrip [7] (https://www.fieldtriptoolbox.org/) is yet another MATLAB plugin 
aimed at MEG and EEG analysis. It is very young and is being actively developed, has 
basic processing modules for signal processing and visualization, but is still under 
heavy construction. 

xBCI [8] (http://xbci.sourceforge.net/) is also a tool for building BCI and 
conducting online neuroexperiments. Like OpenVibe, it features a DFD-like GUI 
pipeline editor, making it suitable for use by non-programmers, and employs an 
extensible plugin-based architecture. Unfortunately, it has not been updated since 
2008. 

PyFF [9] (http://bbci.de/pyff/) is a Feedback Framework written in Python. Its 
main purpose is to simplify creating neurofeedback applications by utilizing a 
relatively simple but still general-purpose programming language Python as its core 
scripting engine. PyFF is very convenient and easy to use for IT specialists, but the 
project was not updated for 6 years. 

http://biosig.sourceforge.net/
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SNAP (https://github.com/sccn/SNAP) is the Simulation and Neuroscience 
Application Platform based on the Panda3d computer game engine and aims to bring 
complex human-computer interaction into the field of neuroscience. It uses Python 
as a scripting language and is easily extensible with custom plugins. Unfortunately, 
as of 2021, the platform has not been updated in 8 years and falls behind 
significantly in terms of modern infrastructure. 

E-Prime is a software platform “designed to facilitate the conception of any 
experiment that uses a computer as an interface between the subject and the 
experimenter” [10]. It follows the paradigm of an integrated research environment, 
supporting the study from its idea through design and conduct to the results 
processing steps, and features many high-level tools, including a toolset for stimuli 
presentation. But its course towards an “all-in-one” solution, proprietary nature, and 
the lack of modularity poses a problem in case of the need for integration. 

DMDX [11] is a tool for stimulus presentation in linguistic experiments with the 
stress on very precise and accurate timing of stimuli. It is very stable and mature and 
is widely popular, but it is proprietary, closed-source, and lacks support for any 
platforms besides desktop Windows. It also was not updated in recent years. 

PsychoPy [12] is a free, open-source, and cross-platform toolbox for conducting 
experiments in behavioral sciences. It is very flexible, but nonetheless, the only 
extension method it supports is Python scripting. 

BOLDSync [13] is a stimulus presentation framework designed specifically for 
neuroscience studies. It employs client-server architecture and uses a VLC media 
player for stimulus presentation. It is open-source, but it is based on MATLAB and 
not really designed to be extensible, and primarily targets functional magnetic 
resonance imaging studies. 

ViSaGe (https://www.crsltd.com/tools-for-vision-science/visual-
stimulation/visage/) is a stimulus presentation solution that is quite unique from the 
other tools in our list. It is an integrated hardware and software system for stimuli 
presentation that allows precise control over the timing, color, and luminance of the 
visual stimuli presentation. On the other hand, ViSaGe relies on MATLAB to enable 
integration with third-party systems, quite pricey and by design requires external 
hardware. 

Psychtoolbox [14] is yet another specimen from the family of MATLAB plugins. 
Its goal is to provide researchers with a set of utility functions and tools to be used 
during stimulus presentation. It is very mature and still ongoing, but its aim to be a 
MATLAB plugin drastically affects its integrability. 

In summary, there are a lot of popular, mature, and robust tools for conducting 
neuroexperiments in general and presenting various types of stimuli, but to the best 
of our knowledge, there are none that can provide seamless and unified integration 
with other software and hardware systems.  

The authors of [2] mention that “a general BCI standard is currently the main 
issue. Most of the studies on BCI have used different evaluation metrics on their own 
as per their convenience without any uniformity, which makes it difficult to choose 
the most efficient method, especially for new researchers in this field.” 

Our paper presents an original ontology-driven solution to tackle this problem. 

https://github.com/sccn/SNAP
https://www.crsltd.com/tools-for-vision-science/visual-stimulation/visage/
https://www.crsltd.com/tools-for-vision-science/visual-stimulation/visage/


4. Stimuli Representation Tools 

4.1. Stimuli Representation Pipeline 
To get the meaningful data for further analysis (involving both machine learning 

algorithms and visual analytics performed by experts), stimuli representation should 
be accurately synchronized with the EEG signal. Often, the presence/absence of a 
particular stimulus is encoded as a high/low signal level in the special channel of 
EEG recording along with the other channels, which represent brain activity. The 
rising edge of the signal in this special channel should perfectly match the time the 
stimulus appears. The falling edge should correspondingly match the time the 
stimulus disappears. 

To achieve the needed time-scale accuracy, special hardware solutions are 
involved, for example, photo-sensors mounted on the monitor that shows the visual 
stimuli. These sensors emit electrical impulses whenever a new stimulus is shown on 
the monitor, and the impulses are recorded by an EEG device along with the signal 
from the headset. This kind of registration system is however limited to unimodal 
stimuli (visual only). A more flexible way is to emit electrical impulses directly by the 
computer that presents stimuli.  

To minimize the output lag of the impulses emitted we propose using a single-
board microcomputer with general-purpose input-output (GPIO) pins available. The 
most popular microcomputers are Raspberry Pi and Orange Pi. In the present work, 
we adopted Orange Pi PC Plus that has 28 different GPIO pins along with the power 
lines of 3.3 V and 5 V, as well as built-in Ethernet and WiFi adapters. It is based on 
the H3 Quad-Core Cortex-A7 CPU, has 1 GB DDR3 RAM and Mali400MP2 GPU 
supporting OpenGLES 2.0. Although the overall performance of this computer is 
fairly low (compared to desktop computers), it is enough to present different kinds of 
stimuli, including text, images, animations, videos, and sound. Moreover, Orange Pi 
can be transparently integrated with tangible user interfaces [15], allowing to involve 
haptics modality. 

The schema of the stimuli representation pipeline proposed is shown in Fig. 1. 
 

 
Fig. 1. Stimuli representation pipeline based on the SciVi platform tools 

 



As shown in this figure, SciVi Server hosted on the Orange Pi PC Plus single-
board microcomputer represents visual (by the monitor connected via HDMI port) 
and auditory (by the speaker or headphones connected via a mini-jack port) stimuli 
to the Informant. The SciVi Server communicates with the SciVi Thin Client, SciVi 
Storage, and SciVi Processing Nodes by sharing the necessary parts of ontologies and 
by exchanging the control commands and data.  

The electrical signal from the Informant’s headset transmitted over up to 128 
analog channels (128 AC) is being registered by an EBNeuro Be Plus LTM device that 
contains an analog-to-digital converter, an amplifier, and a communication module 
to stream the digitized signal over the local area network (LAN). This signal is being 
received by the SciVi Server that incorporates software logic of parsing EBNeuro 
network packages and controlling the EBNeuro device state (for this, a self-written 
driver is used). The SciVi Server acts as a proxy for the SciVi Storage, where the EEG 
data are saved, and for the SciVi Processing Node, where the data are filtered, 
clustered and classified. The experiment director accesses the SciVi Server via a 
Terminal (arbitrary desktop computer, laptop, or mobile device) running the SciVi 
Thin Client.  

Whenever the stimulus appears, SciVi Server uses Orange Pi GPIO pins to send a 
synchronization signal that is received via a special DC-A input of the EBNeuro 
device and recorded along with EEG data. 

If the experiment requires actions from the informant, two control circuits are 
provided: Informant’s Button (the button that emits square-shaped signal recorded 
by EBNeuro device through special DC-B input) and Informant’s Controls (arbitrary 
Joystick-like controller connected to the Orange Pi via GPIO pins). Informant’s 
Button may be used to store the feedback from the informant. For example, an 
informant can indicate whether he/she has imagined some situation that is studied 
in the particular experiment. Informant’s Controls are used to give the informant 
potential control over the stimuli presented, for example, to navigate between them. 
Currently, pushbuttons are used, but in the future more specific hardware interfaces 
can be adopted, including tangible ones [15]. 

SciVi Server, SciVi Storage, and SciVi Processing Node are implemented in 
Python, having a lot of common code related to network discovery and 
communication (that is mainly based on the WebSocket protocol). SciVi Server relies 
on the Flask framework (https://flask.palletsprojects.com/) to allow HTTP-based 
communication with Web clients. Server-side plugins are mainly implemented in 
Python too, but some of them use native libraries written in C++. SciVi Processing 
Node relies on SciPy (https://www.scipy.org/), MNE (https://mne.tools/), and 
scikit-learn (https://scikit-learn.org/) libraries to perform machine-learning-based 
processing and analysis of EEG data. SciVi Thin Client is written in JavaScript 
relying on HTML5 and CSS3. 

4.2. Declaration of Stimuli Presenting and Data Acquisition 
Pipeline 

As mentioned above, ETL-, filtering-, and visualization pipelines in SciVi are 
declared with the help of DFDs composed of high-level operators. Each operator has 
its ontological description [1]. An example of the DFD declaring a presentation of 
words as a specific type of visual stimuli is shown in Fig. 2. 

 

https://flask.palletsprojects.com/
https://www.scipy.org/
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Fig. 2. SciVi DFD declaring a presentation of word stimuli 

 
In this DFD, the “EBNeuro” operator is responsible for communicating with the 

EBNeuro Be Plus LTM EEG device. Implementation of this operator uses a self-
written device driver running on the server-side. It sends control commands to the 
EBNeuro device and receives the EEG data stream. 

“EEG Chart” is a client-side visualization tool that draws received EEG data 
stream as a line chart (see Section 5 for details). It is worth noting, that the data link 
from the “EBNeuro” operator to the “EEG Chart” operator incorporates automatic 
data serialization and marshalling on the SciVi Server, as well as data receiving and 
deserialization on the SciVi Thin Client. The mechanisms of automatic marshalling 
based on DFD make data transfer inside SciVi transparent for the user: the user just 
declares the sequence of operators, which should be applied to the data, and does not 
worry about where a particular operator is running and how exactly it 
receives/transmits the data. 

The “Word Stimulus” operator is responsible for presenting the sequence of 
words on the screen. It has corresponding settings, which allow to set up the list of 
words, the duration of showing individual words, and the number of times 
(iterations) the list of words is presented. Each word appears on screen, stays for a 
given time, then disappears, and the screen stays black for a while; after that, the 
next word appears. This process is repeated n ⋅ m times where n is a number of words 
and m is a number of iterations requested. Simultaneous with the showing of each 
individual word, the synchronization signal is generated using the Orange Pi GPIO 
pin, which is connected to the DC-A input of the EBNeuro device. When the word is 
shown, the level of the synchronization signal is set to high, otherwise, it is set to low. 

“Test Channel” operator reports whenever the voltage level in the given channel 
(DC-A in our case) is high (above a given threshold) or low (below a given threshold). 
This provides a feedback loop from the EBNeuro EEG device: when the high level of 
a synchronization signal appears along with the EEG data, it means, these data 
belong to the informant’s reaction to the stimulus. To avoid switching to the next 
word before the reaction to the previous one is fully recorded, the “Word Stimulus” 
operator is locked by the synchronization signal. 

“Write EEG” operator stores the EEG data to the file of a standard EDF format. 
There are two instances of this operator in the DFD. The upper one stores the 
informant’s reaction to each word in an individual file. The data are buffered, 
whenever the “Write” input of the operator receives “True”. When it is changed from 
“True” to “False” (which means, the word is no longer presented), the file is written 



to the disk. The name of the file is concatenated from the values of “File Number” 
and “Filename” inputs of the “Write EEG” operator, prefixed with the informant’s 
code that is set up via the operator’s settings. If the file with the generated name 
already exists, the name is suffixed with the number. 

The lower “Write EEG” operator stores the EEG data of the informant when no 
stimulus is presented. Instead of the word, “String Constant” is supplied as a 
filename, defining a common part for all the names of corresponding files.  

For presenting image-based and auditory stimuli, the DFD looks the same, but 
the operator “Word Stimulus” is replaced by the “Image Stimulus” and “Audio 
Stimulus” correspondingly. In case, a new type of stimuli is needed, the required 
operator can be added to SciVi by extending the SciVi ontology, without modifying 
the source code of the platform. 

In the current version of SciVi tools, both visual and auditory stimuli are 
presented using the PyGame Python library (https://www.pygame.org/). Right now, 
words (provided as a list), images (provided as PNG and JPG files), and sounds 
(provided as WAV, MP3, and OGG files) can be presented as stimuli, which covers all 
the preliminary experiments we have carried out for now. However, the SciVi 
platform already contains appropriate rendering tools to perform more complex 
scientific visualization on single-board microcomputers like Orange Pi and 
Raspberry Pi [15], so they can be used whenever needed.  

Besides declaring stimuli representation, DFDs can be used to compose and 
process EEG data processing pipelines as well. For this, corresponding operators are 
needed, which allow the experiment director to set up required transformations for 
both real time obtained and pre-recorded data. Lightweight processing operators can 
be executed on the server- or client side, while the operators involving complex 
calculations are automatically moved to the SciVi Processing Node (see Fig. 1) that is 
hosted on the powerful PC.  

4.3. Ontology-Driven Pipeline Processing 
We demonstrate a unified approach to ontology-driven processing of audio-

visual stimuli representation pipeline by an example of experiments within the 
digital humanities project “Conceptualization of Social Reality in Mass 
Communication: Cognitive Information Modeling Using Machine Learning Methods, 
Visual Analytics and Neurocognitive Technologies” (State Assignment No. FSNF-
2020-0023, Research Project of Perm State University, 2020–2022). At the current 
stage of our research, we focus on finding the EEG patterns of the reaction to 
different concepts (words and texts) displayed on the screen or played back with a 
speaker. 

To organize the ontology-driven pipeline processing mechanism, we build the 
BCI ontology upon the well-known BCI-O [16]. BCI-O ontology describes generic 
scenarios of BCI-environment interaction, as well as common properties of EEG-
based BCIs. We propose using a lightweight ontology, which model contains two sets: 
the thesaurus and the set of basic relations. The thesaurus specifies BCI-related 
concepts, such as “EEG device”, “EEG channel”, “EEG electrode”, etc. In order to 
reduce the complexity of the ontology reasoner allowing to embed it to Edge devices 
as firmware [17], we restricted the set of relation types of BCI-O by the paradigmatic 
types only, such as “has”, “a_part_of”, “use”, “use_for”, “is_instance”, and “is_a”. 
The fragment of the proposed ontology is shown in Fig. 3. 

 

https://www.pygame.org/


 
Fig. 3. Fragment of enriched BCI-O ontology 

 
We introduce physical parts of “EEG device” concept: “EEG Amplifier” and “EEG 

Headcap” that has “EEG Electrodes”, as well as split “channeling schema spec” into 
physical and logical layers, represented by “physical channel” and “logical channel” 
concepts respectively. Physical channels represent amplifier ADC inputs having their 
ADC properties, such as minimum and maximum sampling rates, physical and 
digital limits, etc. Logical channels tie physical channels to particular electrodes, 
which have their headcap locations. Using these concepts, we describe our 
experimental equipment as “EBNeuro Be Plus LTM 21 channel EEG-BCI device” 
(with a “EBNeuro Be Plus LTM 21 channeling schema spec” of logical channels) that 
consists of “EBNeuro Be Plus LTM” amplifier (with a “EBNeuro 64+4 channeling 
schema” of physical channels) and “EBNeuro EEG 21 Electrode Headcap” (with 
corresponding electrodes). This description model ensures flexible mapping of EEG 
data processing algorithms between different BCI hardware. 

5. Visual Tools Supporting EEG-Based BCI Research 
The main goal of the present work is to create a flexible stimuli representation 

pipeline to conduct experiments involving EEG. However, almost every EEG-based 
experiment requires a visual inspection of the data being collected. The problem is 
that the EEG device is very sensitive to electromagnetic noise of different nature, so, 
at least at the beginning of the experiment, the impact of different noise factors 
should be reduced as much as possible. 

First of all, the contact of the headset electrodes with the scalp skin of the 
informant should be good enough. According to the advice of experts in 



neurophysiology, the impedance of electrodes should be no more than 30 kOhm. To 
lower the impedance, special conductive gel is used. But the amount of gel that 
should be applied cannot be defined in advance, it should be picked up 
experimentally, because it depends on the informant’s hair density, hairstyle, skull 
shape, etc. It must be noted, that too much gel can short-circuit the neighbor 
electrodes spoiling the signal. So, there should be a real time monitoring tool to 
check the impedances of particular headset electrodes to see whether more gel 
should be applied.  

The EBNeuro device has a special mode to measure impedances and transmit 
them instead of regular potentials. To allow the experiment director to monitor these 
data, we adopted an SVG image of a standard international 10-20 electrode 
placement system. Each electrode is painted by the red-to-green color scale 
according to its impedance. Hovering the electrode pictogram by the mouse cursor 
opens a pop-up with an actual impedance value. The corresponding DFD diagram is 
shown in Fig. 4 and the visualization results in SciVi (for the 21-electrode headset) 
are shown in Fig. 5. 

 

 
Fig. 4. SciVi DFD declaring a visual inspection of impedances 

 

 
Fig. 5. Visualization of the impedances in SciVi 

 
Next, after the headset is ready, the EEG signal should be inspected, whether it 

contains significant noise. For this, a line chart of potentials and a histogram of 
frequencies should be visualized for each EEG channel. We implemented a 
minimalist WebGL-based charting engine that enables very fast visualization suitable 
for real time EEG signal monitoring. This engine is available as an “EEG Chart” 
visualization operator that is used in the DFD shown in Fig. 2. The result of signal 
rendering in SciVi is shown in Fig. 6. 

 



 
Fig. 6. Visualization of the EEG signal in SciVi 

 
Although the visualization methods mentioned above are quite traditional, they 

are essential for conducting EEG-based experiments, so they should be included in 
any corresponding data processing pipeline. The SciVi visual analytics platform 
contains a lot of visual analytics tools [1, 15] organized according to the principles of 
cognitive graphics [18]. In the future, we plan to adopt them for performing more 
complex visual analytics of EEG data. However, this requires corresponding data 
processing mechanisms to be implemented (including the machine-learning-based 
clustering, classification, etc.), which we are working on. 

6. Conducting the EEG-Based Experiments 
This section is devoted to the validation of the proposed pipeline of stimuli 

representation and EEG data recording by solving the task of discriminating 
reactions to textual visual stimuli. The experiment is as follows. The subject who 
signed informed consent for participation is seated comfortably in front of a 
computer monitor with the headset put on (see the photo in Fig. 7). At the starting 
phase of the experiment, a 30 seconds timeout with a blank screen is held to help the 
subject to get into the right mood. After that, the presentation of visual stimuli 
begins. 

 



 
Fig. 7. Conducting the EEG-based experiment: collecting the reactions to  

the word stimuli 
 
In this experiment two major types of textual stimuli are used: a selection of 

Russian verbs of different transitivity and a meaningless placeholder stimuli 
(sequences of vertical bars like '|||||||||'). They are presented to the subject in an 
alternating manner with some blank intervals in between.  

This experiment had two goals. First, it was a pipeline test to validate the 
hardware setup and software solutions. Second, it was a step towards discovering 
whether different linguistic features of perceived words trigger specific brain 
activities. 

The pipeline defined by the DFD shown in Fig. 2 is used to present the words to 
the informant and record their reactions. After the data are collected, machine-
learning-based classification is performed. The DFD declaring classification pipeline 
is shown in Fig. 8. 

 

 
Fig. 8. SciVi DFD declaring the EEG classification task 

 
Our task here was to figure out whether it is possible to discern a difference in 

brain activity between different groups of visual stimuli. We attempted to 
differentiate between: 

1. Presence of visual stimuli (of any category) and their absence. 
2. Presence of a meaningful stimulus and presence of a placeholder. 
3. Presence of a transitive verb and presence of an intransitive verb. 



For each type of the classification task, we employed a Linear Discriminant 
Analysis (LDA) [19] classifier together with two different feature extraction methods: 
Common Spatial Patterns (CSP) [20] and Power Spectral Density (PSD) [21]. All the 
recorded data were split into train and test datasets according to the 70/30 rule. The 
accuracy of the experiment results is presented in Fig. 9. 

 

 
Fig. 9. Classification results for different visual stimuli 

 
The CSP patterns for each task are presented in Fig. 10–12. CSP patterns 

highlight zones with maximal activity difference between opposite stimuli in binary 
classification. 

 

 
Fig. 10. CSP patterns for “Stimulus vs Void” task 

 

 
Fig. 11. CSP patterns for “Word vs Placeholder” task 



 
Fig. 12. CSP patterns for “Transitive Verb vs Intransitive Verb” task 

 
Fig. 10 clearly illustrates the visual cortex activity importance for CSP-based class 

separation. This seems logical taking into account that the task is to distinguish the 
presence and absence of the visual stimulus. In Fig. 11, important activity is shifted 
towards the frontal lobes. That can also be seen as an empirical justification of 
correctness of the pipeline: reading the meaningful words causes frontal lobes 
activation while perceiving the meaningless placeholder causes no frontal lobes 
activity. Fig. 12, however, shows that CSP basically failed to find any meaningful 
difference in the brain activity between two classes of recordings. Given that both 
types of stimuli induce intellectual processing in the frontal lobe, this is not 
surprising, and therefore conclusion can be made that the feature extraction 
algorithm should be changed for that particular task. 

The goals of the experiment are basically achieved. First, the pipeline can be 
considered viable. Second, it can be concluded, that the linguistic features of words 
can hardly be precisely distinguished by simple discrimination algorithms, and more 
complex machine learning methods are required. 

7. Conclusion 
In this paper, we propose new SciVi capabilities for creating a flexible and 

configurable hardware-software pipeline to represent auditory and visual stimuli in 
EEG-based experiments. The core of this pipeline is the ontology-driven visual 
analytics platform SciVi that allows declaring the data obtaining, transformation, 
storing, and visualization steps through the high-level graphical programming 
language based on DFDs. Two levels of configurability are implemented. First, the 
experiment director can combine required data processing operators to suit the 
conditions of a particular experiment. Second, the knowledge engineer can extend 
SciVi with new operators describing them in the SciVi ontology, without modifying 
the platform’s source code. 

The distinctive feature of the proposed toolset is the automatic distribution of 
data acquisition, storage, processing, and visualization on different computing nodes 
in the network, which balances the computation load and allows utilizing various 
hardware platforms joint with different EEG devices and different stimuli 
controllers.  

The proposed methods and tools created have been used for EEG-based studying 
of the people’s reactions to the displayed words, which have different linguistic 
features. While the toolchain created proved its viability, it was also shown that it is 
necessary to continue experiments using not only CSP/LDA and PSD/LDA, but also 
other machine learning algorithms or boosting to deal with distinguishing the 
reactions to the words with different linguistic features. So, more complex data 
processing methods should be used for solving this problem. 

The high-level graphical user interface of SciVi allows the application domain 
specialists without advanced IT skills to conduct EEG-based experiments involving 



complex data transformations, advanced visualization, and visual analytics. 
Moreover, tools providing seamless integration with third-party software and 
hardware EEG- and other monitoring devices are under development. 

Next, we plan to extract the most significant mass-media concepts like “power”, 
“court”, “democracy”, “opposition” etc. The aim of the future research is to compare 
the informants’ verbalized opinions about these concepts (collected by sociological 
surveys) and physiological reactions of the same informants to these concepts 
(measured by EEG). The hypothesis is that the verbalized reaction does not always 
match the actual emotions caused by the stimulus, since the verbalized reactions can 
be affected by stereotypes and other external factors.  

Studies that aim to identify brain activity on significant social and political 
concepts are most often carried out with image-based stimuli [22]. At the same time, 
reactions to verbal concepts attract the researchers’ interest too: “all sociopolitical 
concepts that have been evaluated in the past are affectively charged, and that this 
affective charge is automatically activated from long-term memory within 
milliseconds of presentation of the political stimulus” [23]. In this regard, not only 
political concepts are to be considered, but also any social concepts that are 
significant for a person (for example, “honesty”, “family”, “money”, “future”, etc.). 
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