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Abstract 

This article presents the results of the experimental research and testing of Chasles’ 
historical theorem. The theorem shows the singularities of the intersection of an arbitrary 
tetrahedron and an arbitrary quadric (second-order surface). The need for testing is 
preconditioned by the absence of a proof of the theorem and the complexity of its 
perception in Chasles’ version. 

The experiments included the construction, visualization, and study of 3D computer 
models using AutoCAD and SolidWorks. All forms of quadrics are considered in their 
different relative positions to the tetrahedron. The experimental procedure is considered in 
detail and the accuracy of the results is estimated. The author tested all the intersection 
variants given in the theorem: the edges intersect a quadric, the vertices belong to a 
quadric, the edges are tangent to a quadric, the faces are tangent to a quadric, etc. The 
experiments confirmed the scientific novelty of the theorem, which is that four intersecting 
straight lines drawn according to the algorithm of the theorem belong to the surface a 
single one-sheeted hyperboloid. 

The paper investigated in detail the form of the theorem when the planes drawn 
through the edges of a tetrahedron are tangent and enclose the quadric. It shows that there 
are 4,096 combinations of plane positions. Only 64 of these combinations, obtained using 
AutoLisp, lead to the realization of the theorem. This conclusion supplements the theorem. 

The results differ from the theorem in two forms. The paper presents a proof of one of 
the theorem forms, although a universal proof of the theorem has yet to be developed. The 
models and algorithms can be used when teaching computer geometric simulation. 

Keywords: 3D computer geometrical simulation, Michel Chasles, tetrahedron, 
quadrics, Pascal’s hexagon, Auto-CAD, AutoLisp. 

 

1. Introduction 
Polyhedrons and quadrics (second-order surfaces) are widespread geometric elements in 
architectural design. The shape and interaction of these elements have been studied and 
investigated in detail over the centuries-long history of the development of geometry. 
Nevertheless, in [1], we find a theorem revealing one more side of this interaction. This is 
Chasles’ theorem, which shows some previously unexamined singularities of the 
intersection of polyhedrons with quadrics. 
Let us present the formulation of Chasles’ theorem given in [2]: 
“The planes determined by the points of intersection of some second-order surfaces with 
three edges of the tetrahedron converging at one vertex intersect the opposite faces along 
the straight lines, which are rectilinear generators of one hyperboloid.”[author’s 
translator] 
This theorem has scientific novelty as it is known that a one-sheeted hyperboloid (Hyper) 
is determined by three skew straight lines [3–6], which are taken as its guides. As a result 
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of applying the algorithm of Chasles’ theorem, we obtain four segments belonging to the 
family of guides of a single Hyper. That is, if you construct a Hyper by three segments 
arbitrarily selected from these four, the remaining segment will also belong to the surface 
of this Hyper. This is a previously unknown relationship between the intersection of a 
tetrahedron with a quadric and a one-sheeted hyperboloid.  
Chasles did not prove his theorem, but showed its numerous manifestations. Chasles drew 
an analogy between his theorem and Pascal’s theorem [7, 8], which was not proved by its 
author and therefore aroused a mystical feeling among his contemporaries [9, p. 73] 
(“Pascal’s mystic hexagon”). Chasles’ theorem evokes the same feeling today.  
The relevance of Chasles’ theorem has been aided by the development of 3D computer 
geometric simulation in architectural and construction design and the widespread use of 
polyhedrons and quadrics as objects of architectural projects. 
Chasles’ theorem and his references to the works of the 19th century [10] are difficult to 
understand. There are no illustrations explaining the theorem. Perhaps for these reasons 
the theorem was forgotten. Over a century and a half of / after its publication, we found 
only one article [2] and a brief reference to Chasles’ theorem [11, p. 99].  
[2] gives a proof for Chasles’ theorem as exemplified by an ellipsoid. It can probably be 
extended to other quadrics based on projective transformations. However, such an 
approach complicates the understanding of the theorem.  
Our work constructs visual 3D models revealing the content of Chasles’ theorem and its 
numerous forms. 
Chasles’ theorem considered the following relative positions of a tetrahedron and a 
quadric: 

1. each edge of the tetrahedron intersects the quadric twice;  
2. all the vertices of the tetrahedron belong to the quadric; 
3. all the edges of the tetrahedron are tangent to the quadric; 
4. all the faces of the tetrahedron are tangent to the quadric;  
5. two tangent planes enclosing the quadric are constructed through each edge; 
6. there are also several examples from projective geometry. 

In this paper, we consider 1–5. Within the boundaries of each form, the shape of the 
tetrahedron and the type and parameters of the quadric can be arbitrary. 
When creating models, we used well-known methods of construction in AutoCAD [12], 
Lisp for constructing a Hyper model using three guides [13], and constructing conics by 
the five parameters [14]. We took into account the study and application of Pascal’s 
hexagon [15], constructing 3D models of quadrics [16], and using 3D parametrization of 
SolidWorks [17]. 

2. The edges of the tetrahedron twice intersect the 
quadric (variant 1) 

Each edge of the tetrahedron intersects the surface of the quadric at two points. The edges 
can intersect the quadric in its real section or on its continuation. 
 

 
Fig. 1. Intersection of a tetrahedron with a paraboloid: а—model; b—triangular sectors; c—

four segments of the guides; d—control Hyper 



Let us consider an example of when a tetrahedron ABCD is intersected with a rotational 
paraboloid (Fig. 1, a). Each edge intersects the quadric in its real section twice. We find the 
points where the edges intersect the quadric. We combine these points from the side of 
each vertex into triangles (Fig. 1, b). Then, we find the intersection of each triangle with the 
opposite face of the tetrahedron. For example, the triangle sA (1,2,3) is constructed from 
the side of the vertex A. Its intersection with the face BCD opposite the vertex A, the 
straight line a is formed (Fig. 1, c). Four line segments a, b, c, d are found for the four 
vertices A, B, C, D: 
a = sA ∩ (BCD); b = sB ∩ (ACD); c = sC ∩ (ABD); d = sD ∩ (ABC).  
According to Chasles’ theorem, the segments a, b, c, d are the guides of a single Hyper 
(Fig. 1, d).  

3. Experimental verification of the accuracy of 
constructions 

We experimentally verify that the four constructed segments a, b, c, d are the guides of the 
single Hyper. First, we confirm that the line segments belong to the skew lines by checking 
for the absence of paired intersections of these segments. Then we apply two verification 
methods.  
First, we choose three arbitrary segments of the four, for example, a, b, c. We take these 
segments as guides and, using Lisp [13], construct a surface of the control hyperboloid—
Hyper (Fig. 1, d). We verify that the fourth segment d also belongs to the surface of this 
Hyper.  
To verify and assess the accuracy of the constructions, we determined the distance from 
the segment d to the elliptical bases of Hyper or the cross-section constructed by the end 
points of the segment d and the Hyper center. The distance did not exceed 0.01% of the 
typical dimensions of the tetrahedron, which indicates the high accuracy of the 
constructions and experimentally confirms Chasles’ theorem. To illustrate, we marked the 
intersection points of segments a–d with ellipses by inserting round markers at these 
points (see Fig. 1, d). 
The second verification method is based on the fact that there are two families of straight 
lines—guides and generators—on the Hyper surface [3–6]. All the generators intersect all 
the guides. Therefore, we verify the possibility of constructing a certain segment m 
intersecting all four segments a, b, c, d. If m is found, Chasles’ theorem is confirmed.  
The segments a, b, c, d were exported from AutoCAD to SolidWorks. Using 3D 
parameterization, we found the fifth segment m intersecting the first four [17]. It is known 
that in the general case, there are two segments intersecting four arbitrarily given skew 
lines [17]. However, in this example, we can move the segment m in space while preserving 
the intersection with the other four. Consequently, the segment m belongs to the family of 
the generators of the Hyper, in which the segments a, b, c, d are the guides, which 
confirms Chasles’ theorem. 

4. The proof of Chasles’ theorem 
For the first time, a proof of Chasles’ theorem was presented in [2]. It is given for the 
intersection of a tetrahedron with an ellipsoid, in which the intersection points are located 
in the real part of the edges. We repeated the same proof [18] for an example with a 
paraboloid (see Fig. 1). 
 



 
Fig. 2. Intersection of a tetrahedron with an ellipsoid: a—model; b—triangular sectors; c—

control Hyper; d—to the proof of the theorem; e—Pascal’s hexagon 
 
Now we construct a proof for a more general example with a combined arrangement of the 
tetrahedron vertices. A triaxial ellipsoid was chosen as a quadric (Fig. 2, a). Vertices A, C 
are outside the quadric, and vertices B, D are inside the quadric.  
We find the points of intersection of the edges with the quadric. For the outer vertices A, C, 
these points are located in the real segments of the edges, for the inner vertices B, D—on 
the continuation of the edges. We combine the points on the side of each vertex into 
triangles (Fig. 2, b). We find the segments a, b, c, d of the intersection of the triangles with 
the opposite faces of the tetrahedron. Using three of them, for example, a, b, c, we 
construct the control Hyper (Fig. 2, c) and experimentally verify that the segment d 
belongs to the Hyper surface. 
To prove the theorem, we choose one of the faces of the tetrahedron, for example, ABC 
(Fig. 2, d). The choice is determined only by the visualization of the subsequent 
constructions. When the quadric intersects this face we obtain a conic, in our example an 
ellipse e. Connecting points 1–6 of the intersection of the edges of the conic face, we obtain 
one of Pascal’s hexagons (Fig. 2, d). The choice of the point connection order affects only 
the visualization of the constructions. We find points P1= (1-2) ∩ (4-5) , P2 = (2-3) ∩ (5-6), 
P3 = (3-4) ∩ (6-1). According to Pascal’s theorem, points P1, P2, P3 belong to a single 
straight line—Pascal’s line—which is easy to verify experimentally. 
Since P1 ⊂ (1-2), then P1 ⊂ sA, P1 ⊂ (4-5) and P1⊂ (BCD). Consequently, P1 belongs to the 
line of intersection of the triangles sA and BCD. However, the line of intersection of these 
triangles, according to the algorithm of the theorem, is the straight line a, therefore P1 
belongs to the straight line a. 
Analogous conclusions for points P2, P3 are: 
P2 ⊂ (5-6), P2 ⊂ sC; P2 ⊂ (2-3), P2 ⊂ (ABD) ⇒ P2 ⊂ c (c= sC ∩ ABD); 
P3 ⊂ (3-4) P3 ⊂ sB; P3 ⊂ (6-1), P3 ⊂ (ACD) ⇒ P3 ⊂ b (b=sB ∩ ACD). 
Since the points P1, P2, P3 belong to the line, the line intersects the lines a, b, c. 
The straight line d is obtained at the intersection of the ABC plane with the triangle sD. 
Consequently, d ⊂ ABC. The line is also in the ABC plane by its construction. Therefore, 
the lines d and line intersect. Their intersection point is designated P4.  



The line intersects all the lines a, b, c, d. Hence, the lines a–d are the guides of a single 
Hyper (see the second verification method above). The theorem is proved.  
Since the line intersects the Hyper guides, it belongs to its generatrix family. This was also 
confirmed by the Hyper model, which experimentally verifies that the line belongs to its 
surface (see Fig. 2, c).  
If, instead of the ellipsoid, we chose another quadric, the line of reasoning would be the 
same. The constructions lead to another conic, including a hyperbola or a parabola. 
According to Pascal’s theorem, the points P1, P2, P3 belong to the single straight line. The 
point P4 also belongs to this line, which leads to a proof of Chasles’ theorem. 

5. Additional examples of variant 1 
We constructed models for all types of quadrics. All the examples confirmed Chasles’ 
theorem. 
For a hyperbolic paraboloid (HypAr) (Fig. 3, a) and a two-sheeted hyperboloid (Fig. 3, c), 
some of the edges intersect the quadric in the real section, and some on the continuation 
(combined variant). For a one-sheeted hyperboloid (Fig. 3, b) and a cylinder (Fig. 3, d), all 
the edges intersect in the real section.  
We obtained other models with numerous variants of the intersection of the edges of a 
tetrahedron with a quadric. The exception is the HypAr, for which we managed to 
construct a model only with a combined intersection variant. 
The model for a two-sheeted hyperboloid is realized both with the intersection of two 
bowls (Fig. 3, c), and with one bowl, similar to a paraboloid (see Fig. 1, a).  
 

 
Fig. 3. Intersection of a tetrahedron with different quadrics: a – hyperbolic paraboloid; b – 

one-sheeted hyperboloid; c – two-sheeted hyperboloid; d – cylinder 

6. All the vertices of the tetrahedron belong to the 
quadric (variant 2) 

Chasles considered this variant as a limiting process when the vertices of the tetrahedron 
approach the surface of the quadric, during which the triangular sections are transformed 
into the tangent planes to the quadric. Taking into account this assumption, the above 
proof can be applied to this variant. 
 



 
Fig. 4. The tetrahedron is inscribed in the sphere: a—model; b—tangent planes; c—guides 

of the control Hyper 
 
Let us consider an example when the vertices of the tetrahedron ABCD are located on a 
sphere (Fig. 4, a). At the vertices, we construct tangent planes perpendicular to the 
segments connecting the vertices with the center of the sphere S. These planes are shown 
as sectors sA–sD (Fig. 4, b). We construct line segments of the intersection of the tangent 
planes with the tetrahedron faces opposite the vertices. For example, the segment a = sA ∩ 
(BCD). We choose three arbitrary segments from a, b, c, d and use them to construct a 
Hyper (Fig. 4, c). We verify that the fourth segment also belongs to the Hyper surface, 
which confirms Chasles’ theorem. 
 

 
Fig. 5. The tetrahedron is inscribed in a hyperbolic paraboloid (HypAr): а, b—model; c—

tangent planes; d—guides of the control Hyper 
 
The second example is when the vertices of the tetrahedron are located on the HypAr 
surface (Fig. 5, a). The vertices of the tetrahedron (Fig. 5, b) and the tangent planes at the 
vertices (Fig. 5, c) are set by the lined frame of the HypAr. The construction of the control 
Hyper (Fig. 5, d) in this example also confirms Chasles’ theorem. 
Control Hypers with narrow elliptical necks were obtained in the models (Fig. 4, Fig. 5). 
Such Hypers also appeared in other experiments. For illustration, the Hypers together 
with the guide segments were scaled, setting different scales along the axes.  

7. The edges of the tetrahedron are tangent to the 
quadric (variant 3) 

A tetrahedron whose edges are tangent to the quadric is called framed. A framed 
tetrahedron (FT) can be constructed only for convex quadrics (sphere, ellipsoid, 
paraboloid, two-sheeted hyperboloid). Therefore, this version of the theorem has limited 
manifestations. 
 



 
Fig. 6. Framed tetrahedrons: а—for a sphere; b—for a paraboloid 

 
We construct the FT for a sphere based on its properties [19]: the sums of the lengths of 
the skew edges are equal between themselves. For the tetrahedron ABCD (Fig. 6, a), we 
write: AB+CD = AC+BD = AD+BC = S. For example, taking S=140, we obtain the values 
AB=70; BC=50; AC=60; AD=90; CD=70; BD=80. We construct the face ABC. We find the 
vertex D at the intersection of three auxiliary spheres with their centers at the vertices A, B, 
C and the radiuses AD, BD, CD, respectively. We plot inscribed circles on two faces. We 
construct perpendiculars from the centers of these circles and we find the center of the 
inscribed sphere at their intersection [20]. Then we determine the radius of the inscribed 
sphere and six points of tangency 1–6. 
For the remaining quadrics: the ellipsoid, the paraboloid (Fig. 6, b) and the two-sheeted 
hyperboloid (Fig. 7, a), this property of the FT sides is not satisfied. Therefore, the FT was 
constructed in SolidWorks using 3D parameterization. We constructed the surface of the 
quadric and six segments tangent to the quadric. The vertices of the segments were united. 
To set the tangent planes at the points of tangency, we constructed line segments 
perpendicular to the quadric. 
 

 
Fig. 7. The edges of the tetrahedron are tangent to the two-sheeted hyperboloid: a—model; 

b—construction of the segment b for the vertex B; c—four coplanar segments; d—
construction of the segment d for the face ABC; e—four intersecting segments 

 



In Chasles’ theorem, there are two clauses for framed tetrahedrons—clause 3 and clause 7. 
Various construction algorithms are provided for these points. Let us consider them as 
exemplified by a two-sheeted hyperboloid (Fig. 7).  
According to clause 3, the points of tangency belonging to the edges going from one vertex 
are combined into triangular sectors. There are four such sectors (by the number of 
vertices). We find the lines of intersection of each sector with the face opposite the vertex 
of this sector. We repeat this operation for each vertex. For example, for the vertex B we 
construct a sector (3-4-5) and a segment b = (3-4-5) ∩ (ACD) (Fig. 7, b). As a result, we 
obtain segments a, b, c, d for all the vertices (Fig. 7, c). The experiment shows that these 
segments are coplanar. 
According to clause 7, tangent planes to the quadric are constructed at the points of 
tangency belonging to the edges of a single face. There are three such planes for each face 
(by the number of edges of the triangular face). We consider further constructions on the 
example of the face ABC (Fig. 7, d). The points of tangency of the edges of this face are 1, 3, 
5. The tangent planes to the quadric at these points are shown by the rectangles s1, s3, s5. 
We find the vertex V of the trihedral angle formed by these tangent planes. We connect this 
vertex by the segment d with the vertex D of the tetrahedron opposite the considered face. 
We repeat the construction for each face and obtain four segments a, b, c, d (Fig. 7, e). 
These constructions show that these segments intersect at one point K, wherein, there are 
no coplanar triples of segments among them. 
Thus, for FT, we obtain either four coplanar segments or four non-coplanar segments with 
a common intersection point. Our result differs from the conclusions of Chasles, who 
believed that the four segments belong to the surface of a single hyperboloid. However, he 
pointed to an analogy with Brianchon’s theorem [1, 7], in which the diagonals of a hexagon 
circumscribed around a conic intersect at one point.  

8. The faces of the tetrahedron are tangent to the 
quadric (variant 4) 

Let us consider the construction of a tetrahedron, whose faces are tangent to a quadric, 
using an example with a two-sheeted hyperboloid. We set four points A, B, C, D on the 
surface of the hyperboloid (Fig. 8). The positions of the points are determined only by the 
condition of the construction visualization. We construct tangent planes at these points. 
Each plane is set by two straight lines tangent to the quadric at the selected point. For 
construction visualization, the tangent planes are displayed by the rectangles sA–sD. 
 

 
Fig. 8. The tetrahedron faces are tangent to the two-sheeted hyperboloid: a—tangent 
planes; b—a tetrahedron and guide segments; c—tangency at the vertices; d—control 

Hyper 
 
For three planes, for example, sB, sC, sD, we find the vertex of the trihedral angle—point K. 
We cut the triangular angle with the fourth plane sA. Using the triangle of the section LMN 



and the vertex K, we construct a tetrahedron KLMN, all the faces of which are tangent to 
the quadric. In the given example (Fig. 8, b) the tangency is achieved on the continuation 
of the faces.  
According to the algorithm of Chasles’ theorem, we connect the points of tangency of the 
faces with the vertices of the tetrahedron opposite the faces (Fig. 8, b). In our example (Fig. 
8, c, d), the face LMN is tangent to the hyperboloid at point A. The opposite vertex is K for 
this face. Therefore, the segment is a =AK. The face KLN has a point of tangency B and its 
opposite vertex M. Therefore, the segment is b = BM, etc.  
We arbitrarily choose three of the four segments, and use them to construct a control 
Hyper (Fig. 8, e). The fourth segment also belongs to the surface of this Hyper, which 
confirms Chasles’ theorem. 
Since the segments a–d pass through the vertices of the tetrahedron, these vertices belong 
to the surface of the control Hyper (see Fig. 8, e). 

9. The tangent planes from the edges of the tetrahedron 
enclose the quadric (variant 5) 

According to this variant of the theorem, there should be 12 tangent planes enclosing the 
quadric, i.e., two planes for each edge of the tetrahedron. Hence, the edges of the 
tetrahedron should not be tangent to the quadric or intersect it. 
 

 
Fig. 9. Tangent planes from the edges of the tetrahedron to the sphere: a—model; b—

tangent planes for the edge BD; c—triangular angle for the face BCD; d—one of the 
segments of the guides; e—one of the variants of four guides; f—control Hyper 

 
We initially studied this variant using the example of a sphere. The sphere could be located 
either outside the tetrahedron (Fig. 9, a) or be completely or partially embedded in the 
tetrahedron.  
Let us consider the face BCD of the tetrahedron ABCD. For the edge BD (Fig. 9, b), there 
are planes PBD and PBD´ tangent to the sphere, which touch it at points K and K´. There are 
six tangent planes for the selected face. Eight triangular angles can be built from them. 
This is determined by the number of combinations of three edges, two tangent planes for 
each edge, i.e. 23. 
Let one of the trihedral angles of the face BCD (Fig. 9, c) have a vertex V. According to the 
algorithm of the theorem, this vertex should be connected by a segment with the vertex of 



the tetrahedron opposite the face. The vertex of the tetrahedron opposite the face BCD is 
the vertex A. We construct the segment d = AV (Fig. 9, d). Eight variants for the segment d 
are possible for the eight triangular angles of the face BCD. 
After similar constructions, we find segments for each face. Let us denote them by the 
name of the tetrahedron vertices, to which they are directed, i.e., a, b, c, d. Each of these 
segments has eight construction variants (according to the number of vertices of the 
triangular angle for each face).  
Thus, the problem of constructing the segments connecting the vertices of the trihedral 
angles with the vertices of the tetrahedron is multivariate. Choosing one segment of each 
face out of the eight possible ones, we obtain 84 = 4096 combinations of the segments a–d 
for the four faces, i.e., 4096 construction variants. This is the number of combinations of 4 
elements (faces) with 8 variants of each element (segments of each face).  
We arbitrarily selected the tangent planes. For example, a plane could be selected twice as 
belonging to two faces with a common edge. Or a plane could be missed. However, for such 
a choice, the result was most often negative, i.e., the theorem was not confirmed. 
Since the theorem does not say how to choose the tangent planes, we assumed that the 
reason for the negative results is connected with the incorrect choice of the tangent planes. 
To determine the conditions for the realization of the theorem, we developed a Lisp 
program, which analyzed all possible combinations of planes and identified those in which 
the theorem was fulfilled. This revealed that out of the 4096 variants, only 64 led to the 
realization of the theorem. Their analysis allowed us to formulate the following necessary 
and sufficient condition for the realization of the theorem: “Each of the twelve tangent 
planes should participate in the construction of the model once and only once” . The 
resulting value coincides with the number of combinations of six elements (edges), two 
variants (planes) for each element, i.e. 26 = 64.  
Let us consider one of the 64 variants, in which we obtained the segments a–d (Fig. 9, e). 
We build the control Hyper for three of them, for example, a, b, c (Fig. 9, f). The 
verification (see Section 3) showed that the fourth segment d also belongs to the surface of 
this Hyper, which confirms Chasles’ theorem. 
This algorithm was experimentally verified for all types of quadrics, with the exception of 
the cylinder and the cone, for which there are no tetrahedrons with tangent planes from all 
the edges to the quadric. 
The experiments with quadrics were carried out as follows. A visual surface of the quadric 
was set. Then, the parameters and position of the tetrahedron were experimentally 
selected so that it would be possible to construct two tangent planes to the quadric surface 
from each of its edges. The parameters of the 12 tangent planes were entered into the Lisp 
program, which checked 4096 possible construction variants and found 64 variants 
satisfying the theorem. We established that, as in the example with the sphere, the 64 
variants are realized only when the above condition on the combination of tangent planes 
is met. Let us consider some examples. 
For a rotational paraboloid and a tetrahedron ABCD (Fig. 10, a), the edge AB and the 

paraboloid were projected onto the plane  ⊥ AB. From the point A´=B´, we found tangent 
lines m, n to the outline of the paraboloid projection—the parabola p (Fig. 10, b). We found 
the tangents m´, n´ for the edge AD (Fig. 10, c). We also found the tangents for the 
remaining edges of the tetrahedron. The edges and the corresponding tangent lines formed 
the desired tangent planes. We applied the program to the 12 tangent planes, which 
revealed the 64 variants with a positive solution. For the most illustrative variant, we 
constructed a control Hyper (Fig. 10, d) with the segments a, b, c, d and confirmed that 
these segments belong to the Hyper surface. 
 



 
Fig. 10. Tangent planes from the edges of the tetrahedron to the paraboloid: a—model;b—
tangent planes for the edge AB; c—tangent planes for the edge AD; d—segments of guides 

and control Hyper 
 
For a one-sheeted hyperboloid, we constructed the tetrahedron ABCD (Fig. 11, a). Using a 
projection onto the plane perpendicular to the edges, we found the tangent planes from all 
the edges to the hyperboloid surface, for example, for the edge AD (Fig. 11, b) and the edge 
AB (Fig. 11, c). We found segments a, b c d. The construction of the control Hyper 
confirmed that these segments belong to its surface (Fig. 11, d).  

 
Fig. 11. Tangent planes from the edges of the tetrahedron to the one-sheeted hyperboloid: 
a—model; b—tangent plane of the edge AD; c—tangent plane of the edge AB; d—segments 

of guides and control Hyper 
 
Since the segments of the guides a, b c d are constructed from the vertices of the 
tetrahedron, these vertices belong to the surface of the control Hyper (see Fig. 9, f; 10, d; 
11, d). 
Let us note one more feature of this variant of the theorem. The control Hypers obtained 
for the 64 variants of the single model intersect pairwise when the fourth-order 
intersection line splits into straight lines and conics. For example, in the experiments with 
a sphere (see Fig. 9), we obtained control Hypers, the intersection lines of which were two 
intersecting straight lines and an ellipse (Fig. 12, a), two intersecting straight lines and a 
hyperbola (Fig. 12, b), and four pairwise intersecting straight lines (Fig. 12, d). 
 



 
Fig. 12. Examples of the mutual intersection of control Hypers: a—two intersecting 

straight lines and an ellipse; b—two intersecting straight lines and a hyperbola; c—four 
pairwise intersecting straight lines 

Conclusion 
We obtained visual geometrically accurate [15] models for all the variants of Chasles’ 
theorem. The models required complex 3D geometric constructions.  
The models confirmed the conclusions of Chasles’ theorem as applied to its main variants. 
However, for the framed tetrahedron, we obtained a conclusion different from Chasles.  
The proof of Chasles’ theorem was found only for the first and second variants of the 
theorem. The problem of finding proofs for all the variants or to find a universal proof of 
the theorem remains.  
The analogy between the theorems of Chasles and Pascal allows us to assume that Chasles’ 
theorem could have the same essence in geometric simulation as Pascal’s theorem.  
The models above are included as relevant problems in a new course on the theoretical 
foundations of 3D computer geometric simulation. The course is meant for students of 
engineering specialties as an alternative to descriptive geometry [21]. 
Our article is among the works showing the current interest in historical works on 
geometry [22], including those of Chasles [23]. It also demonstrates new possibilities for 
studying historical and modern problems [24] based on computer 3D geometric modeling. 
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