
Scientific Visualization, 2020, volume 12, number 5, pages 130 - 164, DOI: 10.26583/sv.12.5.11

Evolution of Human Computer Interaction

V.L. Averbukh1,А,В

A IMM UrB RAS

B Ural Federal University

1 ORCID: 0000-0002-4379-1450, averbukh@imm.uran.ru

Abstract

The work is devoted to the review of the development the human-computer interaction.
In the first sections the history of computing in the "pre-computer" era is briefly described
and then the early history of modern computing, methods of the first computers controlling
and the tasks of programmers at this stage are described. It describes the methods of interac-
tion with the first -generation computers using the remote control elements, punched cards
and punched tapes. The section, devoted to the second generation computers, describes the
emergence of high-level operating systems and programming languages. At this point, there
are such means of interaction with the computer as the displays and, respectively, such pro-
gramming tools as interactive languages and interactive debuggers. Research is also begin-
ning on principles of human-computer interaction the infancy of the discipline "computer
graphics", the development of computer graphics packages and the emergence of interactive
computer graphics standards are considered. In the section “Revolutions in computer sci-
ence” describes the appearance of a large number of the same series computers and the first
super-computers in the context of human-computer interaction. Revolutionary changes are
considered in computer graphics and emerging of the science discipline “computer visualiza-
tion” with its parts “scientific visualization”, “software visualization”, “information visualiza-
tion” and also “programming by demonstration”. The information about the attempt to create
a fifth generation computer based on logical programming is given. It is told about the initial
period of teaching programming. The creation of computer networks and the emergence of
personal computing as well as the creation the tools of modern parallel computing have be-
come the important stages in the development of modern computing. The virtual reality be-
comes an important computer visualization tool .

The modern state of human-computer interfaces is characterized primarily by emerging
of natural interfaces which can be attributed Brain-Computer Interface (Neurocomputer in-
terface, Brain-Computer Interfaces), interfaces based on the direct use of nerve impulses,
speech recognition, recognition of lip movement, mimic recognition and eye tracking (Eye
Gaze or Eye Tracking), haptic interfaces and also interfaces giving tactile feedback (allowing
you to feel the touch),motion capture interfaces the entire human body or individual organs
(head, entire arm, hands, fingers, legs), motion capture toolkits ,in particular, interfaces
based on leg movements (foot-operated computer interfaces), sign interfaces, sign languages.
We briefly describe the activity approach to the design of interfaces and also some problems
concerning the problem of mass interfaces. Finally, we discuss a number of problems arising
from the increasing capabilities of modern computers. The work is in the nature of a popular
science article and it largely reflects the subjective impressions of the author.

Keywords: history of human-computer interaction, computer graphics, computer visu-
alization, computer networks, personal computing, natural interfaces.

1. Introduction
This work is devoted to an overview of the evolution of human-computer interaction. It de-
scribes the early history of computing and the methods of controlling the first computers.

https://doi.org/10.26583/sv.12.5.11
mailto:averbukh@imm.uran.ru

Then the emergence of interactive tools and computer graphics, the emergence of computer
visualization systems is considered. In the context of human-computer interaction, revolu-
tions in computing, such as the emergence of computer networks and personal computers,
are briefly described. More modern means of interaction are considered, for example, natural
interfaces. It also discusses some of the challenges arising from the increasing capabilities of
modern computers. The work has in the nature of a popular science article; it largely reflects
the subjective impressions of the author.

2. Calculator - who is he?
Entire books can be devoted to the history of human-machine interaction as well as the histo-
ry of computation. We will only very briefly touch on these issues. Although both machines
and calculations appeared in ancient times, we will start with more recent moments, namely,
from the era of industrialization, when modern methods of equipment management ap-
peared, and also the problems of complex calculations related to the design of machines for
various purposes arose.
The machines were operated by workers, but the calculations were carried out by highly qual-
ified specialists in the field of computing such as scientists and engineers. Although compu-
ting tools such as the logarithmic ruler and the adding machine have been invented long time
ago, as a rule, calculations in the field of technology, banking and insurance, were carried out
manually for four- handed reliability .It means that the calculations were carried out by two
specialists and compared at each step. If the results did not match, then both calculators re-
calculated the last stage.
To speed up and reduce the cost of solving problems, new computational methods were cre-
ated. It was possible with the use of which to organize computer bureaus with less skilled em-
ployees. It is interesting that already in the XX century a computing bureau was created in the
United States where women worked without special training, who were called computers
(calculators). At the same time, such computing devices as electro-mechanical adding ma-
chines and perforating machines were created. Perforating machines manufactured by IBM
were used to calculate the results of regular population censuses in the United States. In our
country this technique was used in machine counting stations (machine counting bureaus)
for accounting and other calculations.
In the thirties of the XX century, the design and development of the first electronic calculat-
ing machines began around the world. Atomic projects in the USA and the USSR played an
important role in their introduction into practice. However, the calculations of the first atom-
ic bombs were carried out mainly manually and by outstanding theoretical physicists, math-
ematicians specializing in computational methods. Proto-programmatic methods were in-
vented to facilitate and speed up the calculations (similar to those ones used in computers
later).
For example, in the USA, physicists performed calculations according to a scheme similar to
calculations in modern computers. The scheme looked something like this: a computing unit
was extracted, which was calculated by one person, then the selection and verification of a
certain value and its analysis followed, carried out by another person who transferred further
calculations either to one or to another “calculator”. The Soviet atomic project used methods
similar to parallel and distributed computing. Specially trained girls-calculators worked on
electro-mechanical computers.
The calculations were divided into separate blocks, which were simultaneously calculated "in
four hands". Then the individual results were and then collected into the overall score of the
task.
Naturally, scientists, participants in atomic projects paid attention to the created electronic
computers. There are examples of the first programs for the first computers, written by such
prominent scientists as the American physicist and mathematician J. von Neumann and the

Soviet physicist Ya. B. Zeldovich. Figure 1 shows a fragment of the manuscript of John von
Neumann's program [1].

Fig.1. Manuscript of John von Neumann's program [1].

3. The first computers
In the fifties of the XX century, the creation of a computer began. In the United States, IBM
became the leading computer manufacturer. However, as they said in the late forties IBM
considered the production of computers unprofitable, since, according to analysts, no more
than five such machines were needed around the world. There were two in the United States,
one each in England, Germany and the USSR. Germany was defeated and the USSR became
the enemy of the United States in the Cold War, so that number was reduced to three. IBM
was probably influenced by the American government to get the company into what seemed
like a dubious business.
In our country the first electronic computer MESM was made in Kiev under the leadership of
the future academician S.A. Lebedev. Figure 2 represents the team of creators near the
MESM [2].

Fig. 2. The team of creators near the MESM [2].

By the end of the fifties the production of first-generation computers (based on electronic
tubes) had expanded all over the world. Various models of computers were developed with
different command systems. The speed of these machines was from several hundred to thou-
sands of operations per second. According to today's scale, the memory of such machines was
very small. At first, programming was carried out exclusively in codes. One of the first Soviet
machines, Strela (Fig. 3), was implemented on the basis of cathode ray tubes (Fig. 4), which
was less efficient compared to tube machines, but provided an interesting opportunity to in-
teract with programmers.

Fig. 3. Computer Strela [3].

Fig. 4. Electron-beam tube LN-4 computer "Strela" [4].

Computers at this time were used exclusively for scientific computing, for solving complex
problems related to physics, chemistry and engineering calculations. Complex computational
methods were developed and / or used by mathematicians and physicists. There were these
specialists who developed new programs based on these methods.
In our country teaching programming in the fifties began at the mathematics and physics de-
partments of universities and other institutes. At Moscow Power Engineering Institute
(MPEI), a faculty that trained specialists in the field of computers was created. A new profes-
sion a programmer was taken shape. As a rule, these specialists had good training in the field
of numerical methods. They were engaged in the solution and computer implementation of
applied problems. A number of technical universities began training electronic engineers to
work with computer facilities

4. Interaction with computers of the first generation
Now let's consider what way the programmers interacted with computers of the first genera-
tion. The remarkable M-20 machine could be singled out among these machines in our coun-
try with a speed of twenty thousand operations per second. This computer was developed at
the Institute of Precision Mechanics and Computer Engineering (ITMiVT) of the USSR Acad-
emy of Sciences under the leadership of S.A. Lebedev.
 To work on a first-generation computer “computer time” was allocated , that is tens of
minutes or hours during which the programmer was the full owner of the computer.
Programming was carried out in machine codes. The program was recorded using command
numbers and cells. In the fifties programs were already introduced using punched tapes (Fig.
5) and punched cards (Fig. 6), borrowed from the technology of the past (for example, tele-

graph and perforated computing devices). The printing was carried out on a relatively narrow
(less than twenty centimeters) paper tape. Although the internal representation of numbers
and commands was binary (but there were also ternary machines, for example, the Soviet
machine Setun), the programmer mainly worked with octal and decimal numbers. It is inter-
esting when teaching programming, the newly-minted programmers were afraid of they
would have to both multiply and divide numbers in the binary system in the future. But at the
next step it turned out that they could do with the ordinary decimal numbers.

Fig. 5. Punched tape [5].

Fig. 6. Deck of punched cards [6].

All interaction with the computer went through the console (Fig. 7). The console had a set of
buttons and toggle switches as well as indicators for displaying registers and cells. The pro-
grammer entered the program and launched it himself using the buttons on the computer
control panel. Almost no program was launched the first time. An often long and arduous de-
bugging process (debugging) was required. During debugging, the programmer inserted
“stop” commands in key places of the program and could see to which of the nodes control
was transferred and what was the state of the cells and registers of the computer when exe-
cuting this section of the program.The "stop" commands were removed after debugging.
The reliability of the first generation computers was low and the machine broke down almost
every hour. It was necessary to organize a round-the-clock duty of electronic engineers and
technicians since the work was carried out day and night.

Fig. 7. Ural-1 computer [7].

5. The development of computing technology
The situation changed with the creation of computers based on semiconductors (second gen-
eration computers) in the sixties, which reliability and productivity dramatically increased.
For example, the Soviet BESM-6 in 1965 was the fastest computer in the world (Fig. 8). This
computer was also developed at the ITMiVT of the USSR Academy of Sciences under the
leadership of S.A. Lebedev. Its speed was one million operations per second. It’s true that the
RAM was tiny by today's standards, a little more than thirty-two thousand six-byte cells. This
machine worked smoothly almost around the clock with a short break for maintenance. On
the second generation machines such external memory devices as magnetic tapes and mag-
netic drums were actively used.
It was on the second generation machines (primarily FORTRAN and ALGOL) that high-level
operating systems and programming languages were introduced. In our country to describe
the basic concepts, a language different from Western one was used and it is used now. For
example, they said "machine", not "computer", "autocode", not "assembler", "translator", not
"compiler".
Operating systems (OS) provided the execution of application programs and their interaction
with external input and output devices as well as with external memory such as magnetic
tapes, drums and disks. A batch, multitasking mode of computer operation, was implemented
in which the operating system processed a package of programs that were allocated a certain
time slice for execution.
At the same time the application programmer was completely removed from communication
with the computer. The new specialties such as computer operator, system administrator and
system programmer appeared. There were the specialists who continued to interact with
computers through an increasingly complex console. The division between application and
system programmers was quite tough.
For example, in the early instructions for BESM-6 two modes of command execution were
distinguished: the programmer mode (system programmer with great capabilities of some
system commands) and the mathematician (applied programmer) mode.

Fig. 8. Computer BESM-6 [8].

In addition to using the remote control, interaction with the operating system could be orga-
nized through videoterminals connected to the computer (Fig. 10), as well as in cases there
were practically no displays (as in our country), via teletypes (Fig. 9).
The operator and the "system engineer" (the system administrator and the system program-
mer who had access to control the operating system) gave OS commands related to managing
the general computation’s progress and received information from the operating system
about the progress of individual tasks.

Fig. 9. Teletype [9].

Fig.10. Alphanumeric display, [10].

Applied programmer usually transferred the text of the program to special staff (punch-girls)
who typed on punched cards. Then the programmer assembled the punched cards into a
package and handed it over to the computer operators, who entered the programs through
input device . The operating system determined when the program would be launched and
the result of the count was issued for "wide printing", that is on an alphanumeric printing de-
vice (APD). For novice programmers, most of the launches were wasted due to numerous
compilation errors associated with ones when entering punched cards and other small begin-
ner errors. Debugging the program took quite a lot of time.
The introduction of such means of interaction as teletypes and displays made it possible for
the emergence of dialogue languages, such as the predecessor of Basic, JOSS language (the
domestic version was Dialogue BESM-6). The programmer working with language entered
the text of the program and started the execution, having the opportunity to check the results
of calculations on each operator. The development of dialog debuggers for autocodes (assem-
blers) and high-level languages such as FORTRAN and ALGOL began. In the sixties and sev-
enties there were attempts to create Russian-language autocodes (assemblers) and program-
ming languages. For example, the BESM-6 autocodes were russian-speaking Autocode SOMI
and BEMSH (whereas the Madlen autocode was in English). A Russian-language version of
ALGOL was created.
When debugging a program, a programmer could switch to a step-by-step (operator-by-
operator) execution mode or set a "stop" command on a certain operator and display the re-
sults of calculations at each step. Dialogue debuggers dramatically reduced debugging time
for complex programs. Subsequently, the widespread introduction of alphanumeric displays
and the development of appropriate software allowed the computer programmer with "batch"
operating systems to enter program texts without using punched cards and ran programs
from their workplace.
In the first half of the seventies recommendations for the design of interfaces already ap-
peared. In particular, it was stated as important information on the display screen had to be
located diagonally from the upper left corner of the screen and the most important piece of
information was located in the center of the screen. This follows the usual order of reading
and writing texts (from left to right and from top to bottom). It is interesting that for foreign

users, who had the order of reading and writing texts from right to left, were recommended to
arrange information on a diagonal starting from the upper right corner. It was also recom-
mended to design the dialogue systems so that the response time fits within three seconds. In
some cases users were not ready to wait even one second for a response and became nervous
because of waiting. In other cases if the system displayed the progress of the task (for exam-
ple, the loading process), the users could wait several tens of seconds. The recommendations
for choosing the color scheme of the displayed information appeared after the introduction of
color displays. In many respects they were similar to the recommendations for advertising
design.
The problems studying of interaction with computers has become one of the directions of
computing development. In the early eighties one of the founders of Russian computer psy-
chology A.E. Voiskunsky described the important aspects of human-computer dialogue [11].

6. Formation of computer graphics
Let's talk about the formation of mashine (computer) graphics . The creator of the first com-
puter graphics system Sketchpad (Fig. 11) was Aiven Sazerland (Ivan Sutherland). His scien-
tific adviser was the information theory creator K. Shannon . However, according to the in-
formation of the "zero" generation programmers, engineers of the very first machines began
to use recorders and oscillographs to output information about the counting results. On the
Strela computer, building on the basis of cathode-ray tubes, it was also possible to output an
image on the tubes that gave information about the stability of the program execution . The
image was stable when everything was in order with the program. When something went
wrong, the image blurred or even disappeared. It was the prototype for software visualization,
a discipline that emerged in the 1980s.

Fig. 11.Aiven Sazerland working in the Sketchpad system [12].

Two types of graphics devices were developed. There were devices of "hard copy" (plotters,
graphplotters) and devices of "soft copy" (graphic displays), hard copy and soft copy in Eng-
lish.
The first graphic displays resembled the radar screens and may have been based on them. It
seemed natural to make displays based on television receivers, but for a long time bitmap
displays could not be used, since to store the image it was necessary to remember the state of
all the pixels (picture elements) of the screen. Even the most primitive screen of 128x128 lines
required storage of 16384 bits of information. Vector black-and-white displays were widely
used in which the coordinates of the vector’s origin and the shifts in the X and Y coordinates
were transmitted to the screen. It was necessary to update it continuously to obtain a stable

image. The display memory was relatively small and the display began to blink to update the
image with a large amount of information due to the fact that there was not enough time. Be-
cause of this, the display capabilities of such devices were small. It was almost impossible to
display a complex 3D picture.
An alphanumeric keyboard and telephone discs were used as input devices. Later, in addition
to the alphanumeric and keypad, a device such as a light pen was used (Fig. 13). The light pen
could be used in three modes as pointing to a graphic object (the program received the name
of the object; on the basis of this, it was possible to implement "light buttons"), pointing to a
point on the screen (the program received the coordinates of the point) and drawing (the pro-
gram received a set of coordinates entered lines). Graphic displays could have their own
memory or they could use the memory of the computer to which they were connected. In the
latter case, it was easy to animate 2D images. It was necessary to move the image by two arc
minutes (in the case of a small screen about 2 mm) and do it a little faster than half a second.
For example, various input devices were introduced with a mouse (at first it was only called a
bug) (Fig. 14) and a joystick (wand of joy), the trackballs, the touch-screens. Such interfaces,
implemented through operations with any devices, could be called Device Interfaces.
In devices of "hard copy" (plotter) (Fig. 12) it was possible to produce multi-colored graphics
by switching pens (later - markers). Color displays in the 70s were too complex and expen-
sive. According to some sources in the USA a color display cost $ 100,000. In our country
color displays were produced in single copies for special tasks. By the way, in the mid-70s a
foreign black-and-white display (incomplete configuration) cost 10,000 gold rubles for Soviet
scientific institutes, that was more than 11,000 dollars of that time.

Fig. 12. Plotter. First half of the seventies [13].

Fig. 13. Light pen [14].

Fig.14. The computer mouse of the early seventies [15].

Machine (computer) graphics were used to visualize the results of scientific computing and in
design automation systems (CAD - in English it is Computer-aided design, CAD systems).
However, the output of a more or less serious drawing in A1 format could require several
hours of work of the plotter.
Software was developed actively (at first computer graphics packages). In the early seventies
a number of graphic packages were developed in our country. At first, it is necessary to men-
tion such packages as SMOG (Computing Center of the Siberian Branch of the USSR Acade-
my of Sciences, Novosibirsk), [16] and GRAFOR (Institute of Applied Mathematics USSR
Academy of Sciences, Moscow) [17]. For example, packages of dialog (interactive) computer
graphics were also developed [18]. In the West such packages appeared in the sixties. In our
country, the development of it was carried out in the mid-seventies. Foreign plotters and dis-
plays were often used, although domestic devices were also developed.
Interactive computer graphics gave a great effect in the computer’s problems of various mod-
eling processes. It was possible to quickly view a significant number of frames with a graph-
ical display of various model’s elements. As a result, the applied mathematician found himself
“inside” his model and could observe its changes due to the input of parameters and interac-
tion with the program. The presence of graphical input was particularly important as it was
entering the coordinates of a point or entering a curve using a light pen (as a result, the pro-
gram received two arrays with the coordinates of the entered points). Sometimes working
with the program in an interactive mode and displaying graphs made it possible to solve a
complex problem of computer modeling in one session, although before that specialists spent
many weeks on the solution, conducting hundreds of launches.
In the second half of the seventies, the development of standards for interactive computer
graphics began. A draft ,developed in the USA ,of a standard as the Core Graphics System was
published. In our country, this draft standard was implemented in several organizations. A
little later, another project the Graphical Kernel System (GKS) was developed in Germany
which was adopted as an international standard. Despite the very interesting ideas inherent-
ed in these standards, they did not give the expected results, since already in the eighties an-
other revolution in computing technology and, accordingly, in computer graphics began.

7. Revolution in computing
In general, the development of computing technology is a series of successive revolutions,
which often almost cancel the achievements of previous years. Thus, the development of rela-
tively powerful and reliable second-generation computers based on semiconductors made it
possible to introduce operating systems and programming languages into practice. The art of
programming in codes had been developed by that time and the ability to squeeze a serious
program into the limited resources of tube computers turned out to be superfluous. In the
sixties, IBM developed the IBM System / 360 series of computers (figure 15) based on semi-
conductor technology (Fig. 15) with a common command system for both small and powerful
(at that time) machines.
The computers of this series had the same software (operating system and programming sys-
tem) from the point of view of 02 - 5 users . Later, the IBM System / 360 series was supple-
mented with the IBM System / 370 series, after the appearance of third-generation comput-
ers based on integrated circuits. In many countries around the world, analogs of the IBM Sys-
tem / 360 were created. In our country, this analogue was called ES EVM. The presence of
computers with common programming systems made it possible to ensure easy implementa-
tion of the results obtained in one organization into another, even located in another country.
The number of computers in the eighties around the world was already tens of thousands of
copies. These computers were widely used in commercial and scientific computing.

Fig. 15. Computer IBM-360/30 [19]

In addition to computers of "average" power, the development of a supercomputer for scien-
tific computing tasks began. In particular, in the USA the supercomputers (by the standards
of that time) Cray-1 (Fig. 16) and Cray-2 were developed.

Fig. 16. Computer Cray-1 [20].

Back in the sixties, the so-called mini-computers appeared. They were designed to control
technological processes and complex objects, for example, sea vessels. Mini-computers were
also used in interactive computer graphics systems. They were connected to the "main" com-
puter, on which the main computation and the formation of data for visualization were car-
ried out. Mini-computers carried out direct output to graphic displays and support for inter-
action with users by inputting information on display input devices [18].
The development of aviation and rocket technology required the creation of a micro-
computer that could be used to control aircraft and missiles. Precisely micro-computers be-
came the basis for the next revolution in the world of computers.
Computers of high and medium power were occupied in computer rooms .They were large,
specially equipped rooms entirely filled with metal cabinets with main and peripheral devices,
including random access memory, external memory devices (magnetic tapes, magnetic disks),
input and output devices, current rectifiers and transformers. The minicomputers were much
more compact and were the size of one or two double-leaf wardrobe. The transition to inte-
grated circuits made it possible to reduce the computer size, but the Cray still occupied an ex-
tensive room.
In the seventies and eighties the development of a number of areas in computer technology
began. There were such changes in the life of all people on Earth as computer networks, per-
sonal computing and cellular communications. But now we will consider changes in computer
graphics that took place in the eighties.

8. Changes in computer graphics
Developments in the field of computing circuitry and memory made it possible to create reli-
able, compact and inexpensive color output devices based on raster graphics. Graphics sta-
tions were developed as specialized computers that were connected to the "big" computer. In
our country a series of graphic stations Gamma (Novosibirsk, Institute of Applied Physics)
was developed. With the help of the graphic Gamma stations, the data obtained during the
study of the planet Venus were visualized. Gamma-5 graphics cards turned alphanumeric
displays into graphic displays.
The creation of high-quality graphics devices served as a prerequisite for the algorithmic sup-
port development. Algorithms such as ray tracing and radiosity were developed by American
undergraduates and graduate students in the 1980s.
Ray tracing was based on the ancient idea of Aristotle that rays from a person's eyes fall on
objects. However, the idea was used in the opposite way. It is assumed that the emission of a
ray from an object located on the scene constructed by the algorithm on the screen (more
precisely, a separate pixel) onto the human eye or the camera that determines the point of
view. If the ray emanating from the first object collides with another object in front of the
first, then the elements (pixels) of the second object are displayed on the screen and the cor-
responding elements (pixels) of the first one are not displayed. Pay attention that the algo-
rithm is not considered efficient enough, but it parallelizes perfectly.
The radiosity algorithm was based on the assumption that all objects in the scene constructed
by the algorithm either reflect or absorb light. With the software implementation of the algo-
rithm, the corresponding equation of mathematical physics was solved. Other algorithms for
photorealistic graphics were developed, which served as the basis for modern computer
graphics. Later, the implementation of the algorithms was "wired" into specialized graphics
processing units (GPUs), which became one of the foundations of modern computing.
It is interesting that some developers of photorealistic graphics algorithms came to the first
conferences of GraphiCon [21] in Moscow.
Nowadays computer graphics have become not only a scientific discipline, but also an im-
portant branch of the modern computer industry.

9. Computer visualization
The development of modern computer graphics served as a prerequisite for the design of
computer visualization as an independent discipline.
Visualization is described as a tool or method for interpreting graphic data entered into a
computer and generating images from complex multidimensional datasets. It is obvious that
visualization, that can be understood as the visible representation of mental models, existed
long before the advent of modern computing. Moreover, visualization, that is the translation
of data and information into some graphic images, can be considered as an integral part of
our daily life. Initially, immediately after the creation of the first computers, visualization of
counting results was understood as any output of numbers or symbols on a tape of a primitive
printing device, an ATPU sheet or a display screen. Gradually, visualization began to be un-
derstood only as graphical output, for example, drawing two-dimensional graphs or three-
dimensional surfaces. The publication of the report "Visualization in Scientific Computing" in
the November 1987 issue of ACM SIGGRAPH Computer Graphics magazine marked the be-
ginning of a new era in the history of computer visualization. It’s important to say that the re-
port was created under the auspices of the US National Science Foundation.
Let us first give the basic definitions and then talk about the history of the discipline’s devel-
opment.
Computer visualization refers to the technique of translating abstract representations of ob-
jects into geometric images, which enables the researcher to observe the computer modeling
results of phenomena and processes.
The following sub-areas of computer visualization are traditionally distinguished:

- scientific visualization;
- software visualization;
- information visualization.
Scientific visualization refers to the use of computer graphics and human-machine interac-
tion to represent data about objects, processes and phenomena simulated in scientific calcu-
lations.
Software visualization is understood as a set of techniques for using graphics and human-
machine interaction tools used for a better understanding of concepts and effective operation
of software as well as for the specification and presentation of software objects in the process
of creating programs.
The term information visualization refers to the visual description and presentation of ab-
stract information obtained as a result of the collecting process and processing data of various
types and purposes. As a rule, this data does not have a natural and obvious graphical presen-
tation. Information visualization combines scientific visualization and human-machine inter-
action methods. Information visualization techniques are largely associated with such disci-
plines as obtaining new knowledge from databases (data mining or knowledge discovery) and
visual analytics.
Note also that visualization is often simplistically understood only as a direct mapping of
three-dimensional images (rendering) onto a certain output plane or even as a simple set of
visual and iconic interactive methods. By the way, these are very important questions that
should rather be attributed to the problems of computer graphics and human-machine inter-
action.
Despite the different areas of visualization application, there is a deep unity of all its subsec-
tions, both in the methods of constructing display types (up to rendering techniques) and in
terms of the ultimate goals and objectives to ensure the interpretation and analysis of com-
puter modeling results. All this allows us to single out computer visualization as an independ-
ent discipline with its own subject and research method.

10. Scientific visualization
It is clear that the use of graphics to represent the results of scientific computation dates back
to the very beginning of the computer era. In the 1980s, developments in graphics hardware
and software enabled American researchers to rapidly deploy scientific visualization to a new
level. For example, a special issue of Computer magazine was published in August 1989 , de-
voted to scientific imaging and containing the work of researchers from NASA, the laboratory
of the Department of the Navy and other important research centers. The visualization quali-
ty was very good even by today's standards. Soon, other special issues on this topic were pub-
lished. The history of the concepts’ development and methods of scientific visualization is
presented in sufficient detail in work [22].
Later, developments in the field of scientific visualization were implemented on powerful
graphics devices, including virtual reality environments. It will be discussed below.

Fig. 17. An example of three-dimensional visualization of the

human cell’s nucleus, late eighties [23].

At present, a whole series of annual international conferences around the world are devoted
to scientific visualization. A typical example of a three-dimensional human cell’s visualization
of the nuclei, implemented in the late eighties, is shown in Figure 17.

11. Visualization software
In the eighties, a large number of scientific journals devoted to computer topics were pub-
lished. The materials of these journals were available to domestic researchers either through
scientific libraries or through abstract journals, in which reports of almost all scientific arti-
cles were published. The full texts of these articles were available on paper or microfilm. The
analysis of publications related to computer graphics allowed to identify the emergence of two
new directions the visual programming and the program visualization. It is interesting that at
first it was difficult to separate these concepts due to the similarity of the names.
Visual programming implied the use of graphics, in particular schemes, diagrams, iconic im-
ages (icons) in the process of developing programs. Visualization of programming assumed
that already developed programs were presented in the form of the same graphic elements.
Within the framework of programming visualization, one could single out such sections as
animation of algorithms, visual debugging etc.
The ideas of visual programming languages appeared in the seventies when computer
graphics systems began to work quite steadily. Visual languages of the seventies were built on
the basis of flowcharts or diagrams of Nassi-Shneiderman, which served to describe struc-
tured programming. This direction had developed sufficiently by the end of the eighties. Dia-
grammatic and iconic programming languages were developed, compilers of visual languages
were created, [24].
The first animation system for algorithms was developed back in the mid-sixties. Individual
frames were shot on film, and the result was a movie describing the operation of the algo-
rithm. In the eighties, animation systems of algorithms were implemented onthe basis of
modern computer graphics at that time [25]. An interesting idea of algorithmic operations
was proposed which served as the basis for the animation "script" [26].
In general,visual debuggers were based on ideas for interactive debugging. The user had the
opportunity to view, for example, the program trace to see a graphical displaying the data that
the user was interested in. The development of visual debugging systems for parallel compu-
ting began. For this purpose both natural graphics for the application were being debugged
and traditional schemes and diagrams could be used.
The idea of creating software visual complexes was put forward, which consisted in the fact
that both the development of programs, their debugging and their maintenance had to be car-
ried out within a single system with the same graphical representation of software entities.
By the late 1980s, it became clear that a new discipline Software Visualization had taken
shape. In the early nineties, the first publications with its description appeared [27]. In our
country, in 1995 a textbook on this discipline was published [28]. Later the monographs on
software visualization were published in the USA [29, 30]. Visualization of software received
a great development in connection with the development of supercomputing in the nineties.
Figure 18 shows an example the architecture of three-dimensional visualization of the soft-
ware package made in the Vizz3D system [30].

Fig. 18. An example the architecture of three-dimensional visualization of

a software package made in the Vizz3D system [30].

12. Information visualization
At first, information visualization was based on "pre-computer" statistical graphics, that was
on graphical methods of presenting statistical information. Various types of graphs, charts
and diagrams were used, for example, Gantt charts (Fig. 19) and Kiviat charts (Fig. 20).

Fig. 19. The example of Gantt chart [31].

Fig. 20. The example of Kiviat chart [32].

Even simple visualization techniques could be very effective. So the use of moving graphs dis-
playing the patient's condition (temperature, blood composition, test results for infections,
etc.) and a set of medical procedures (use of medicines, physiotherapy, etc.) made it possible
for a specialist to identify effective procedures quickly for specific patients. Note that all the
initial information was at the disposal of doctors , but it was the simultaneous movement of

the graphs that helped to see the connection between the patient's condition and the treat-
ment being carried out (for a certain contingent of patients).
Later, in view of the need to visualize big data, for example, data on activity in social net-
works, the researchers started using of three-dimensional graphics, drawing complex graphs,
etc. It’s important that information visualization methods are used in systems for debugging
the efficiency of parallel programs.

13. Programming by patterns (programming by demon-
stration)
 The "Pattern Programming" section was associated with the problem of software visualiza-
tion. It was popular in the eighties and nineties.
The term "Pattern Programming" was defined for systems that allow the programmer to use
patterns of input and output information during the programming process. There were two
main aspects to programming by patterns (examples) of input, output and the process of logi-
cal inference (or guessing) of the program from these patterns.
In literature the terms "programming by demonstration", "visual learning", "programming by
rehearsals" and others were also used. Although some authors contrast these terms, but we
will use "programming by patterns" and "programming by demonstration" as equivalent.
There was no equivalent in textual sequential programming for many visual aspects of pro-
gramming by demonstration. Programming by demonstration was carried out by manipulat-
ing data on a screen that demonstrated to the computing system what the program had to do.
There were the advantages of this approach because it was easier for the programmer to ac-
complish something than to describe it textually. The user had to be able to instruct the com-
puter, “Watch what I do” and the computer would create a program corresponding to the us-
er's actions. For many systems, programming by demonstration consisted in constructing a
program continuously from the execution track of examples demonstrated by the user.
The principles of programming by demonstration were largely close to the methods of teach-
ing programming, in which ready-made examples’ demonstration of correct programs played
a significant role. Then the student generalized the experience gained to solve new problems
similar to the demonstrated problems. If the demonstration of ready-made sample programs
was a powerful method of teaching a novice programmer, then programming through
demonstrations was a technique for teaching a computing system, a method of demonstrating
to a computer samples of input and output information necessary for the user, so that pro-
grams interacting with the user were built on their basis.
The main goal of programming by demonstrations was to provide the end user with tools for
creating ready-made programs, while at the same time, if it was possible without burdening it
with the need to program (in the usual sense) in languages like C, Pascal or Prolog.
The main aspects of programming by demonstrations were the formation of patterns (exam-
ples) of input, output and the process of inference (or guessing) a program from these pat-
terns. It is clear that an essential part of programming systems through demonstrations was
the means of providing input and output the necessary information samples. Naturally, these
systems had to contain knowledge about the application areas in which the resulting pro-
grams would operate as well as a set of rules for inference of programs based on knowledge.
Therefore, it was possible to characterize programming systems through demonstrations by
the following parameters:
1. Application area and type of users for programs received by the system;
2. Methods of interaction with users of the system;
3. A set of inference rules for programs;
4. Knowledge of the application area.
Programming systems through demonstrations was going from unpretentious systems in the
early seventies to quite sophisticated, equipped with artificial intelligence systems, developed
in the nineties [33]. Many of the works were funded both by the government departments of

the United States and Canada (mainly by the military) and by the largest companies as IBM,
Apple, Xerox etc. However, further interest in this topic began to wane. Perhaps this was due
to the fact that the developed systems ceased to be relevant due to the rapid development of
computer technologies. At the same time, the approaches proposed in this area can be used,
for example, in robot training systems. It seems that interesting programming ideas through
demonstration may come in handy further.

14. Fifth generation of computers
In the eighties, another attempt was made to create a new and important direction in the de-
velopment of computer technology. The idea of a fifth generation computer was put forward.
At that time, three generations of computers were known as on the basis of lamp, semicon-
ductor and computers on integrated circuits. The fourth generation of computers was not
considered. The fifth generation assumed a breakthrough in the field of computing, pro-
gramming and human-computer interaction. Ideas related to artificial intelligence were put
forward, attempts were made to create a new type of supercomputer and programming ap-
proaches based on inference. These programming approaches were supposed to provide a
fundamentally new work with a computer, which had to understand input in natural lan-
guages, speech recognition, language to language translation. Fifth generation computers
were programmed in the Prolog language. Knowledge bases and expert systems were actively
developed within the framework of the project.
Knowledge bases are a collection of facts and rules of inference in the chosen subject area of
activity. For example, you can provide the kinship knowledge base with rules such as "if X is
the father of Y, then Y is the son of X". And then ask information that Sergey is Vasily's father.
Then the system will be able to find Sergei by the query “find Vasily's son”. Knowledge bases (
databases), supplied with predicates, can be an effective tool in more complex versions.
Expert systems had to include both the knowledge of a specialist and the rules of inference
received from him that are relevant for a specific area.
The fifth generation computer project was proposed by Japanese researchers and developers.
It seemed that it was Japan that would make a breakthrough into the future of computing and
programming, overtaking the whole world. However, the development of computer technolo-
gy for a number of reasons took a different path. Many factors played a role in the insufficient
power of computers of the eighties, such as the difficulties of logical programming, imple-
menting full-fledged artificial intelligence, and, most importantly, the computing revolution
associated with personal computers and the Internet. At the same time, it is necessary to em-
phasize the importance of developing knowledge bases and expert systems, which are cur-
rently receiving insufficient attention.
Let’s consider some issues related to the initial training in programming before proceeding to
a description of the emergence of personal computing and computer networks.

15. School programming
In our country, teaching programming to schoolchildren began in the early sixties. Students
of specialized (mathematical) classes were taught basic information on number systems,
mathematical logic, computer devices, command systems and calculation methods. During
the training, a summer practice was carried out during which the students wrote and de-
bugged programs on real computers. Until the mid-seventies teaching programming was car-
ried out mainly in machine codes, as many thought that mastering programming languages
would make learning difficult. By this time, languages such as Algol and Fortran were already
widely used in the practice of applied programming. The theory of algorithmic languages and
the practice of their application led to the fact that many hundreds of languages and compil-
ers were implemented in the world. Note that these languages used English vocabulary as a
basis for describing operators and basic concepts. It’s true that there was a point of view that
the use of national languages in this capacity would facilitate the initial training and master-

ing of programming. By the way, there was a variant of the implementation of Algol with a
full translation into Russian.
Domestic scientists participated widely in teaching programming to schoolchildren in the
framework of school and out-of-school education. It had to be noted the results of researchers
led by Academician A.P. Ershov from the Computing Center of the Siberian Branch of the
USSR Academy of Sciences. Such languages of elementary teaching programming based on
the Russian language, such as Robik and Rapira, were developed, as well as a programming
system for these languages.
At the turn of the seventies and eighties, programming olympiads for schoolchildren began.
However, due to the limited access to computers loaded with real problems, the Olympiads
were held "dry" and the jury checked only the texts of programs written on paper as well as
solutions of logical problems.
In the second half of the eighties the mass training in programming of teachers, university
professors and, most importantly, all schoolchildren began in our country. Scientists of the
USSR Academy of Sciences took an active part in the work on the computerization of educa-
tion. For example, in Sverdlovsk region, this process was led by Academician N.N. Krasovsky.
At this time, personal computers were already widely used abroad, which were used as a
training base. A significant number of personal computers were purchased, which were
placed in classrooms, to which high school students from all over the region were brought.
Mobile classrooms housed in buses came to remote areas. Programming was taught in BASIC
language.
As a result of work on computerization, all-union olympiads in programming began to be
held.
In the nineties, the subject "computer science" entered the secondary school curriculum.
Teaching programming on the basis of personal computers was carried out, as a rule, using
Pascal language. However, talented students mastered new computer technologies on their
own and often outstripped their teachers.

16. Personal computers
Except for mainframes, various specialized computers were created to solve specific prob-
lems. For example, back in the sixties in our country in the Cybernetics Institute of the Acad-
emy of Sciences (Ukrainian SSR) under the leadership of academician V.M. Glushkov, spe-
cialized computers of the MIR series (machine for engineering calculations) designed to solve
various engineering problems were developed. For the MIR-2 computer, the ANALITIK high-
level language was developed as an input language. This language made it possible to formu-
late tasks with analytical transformations of formulas, to directly carry out operations of dif-
ferentiation and integration. A display was used to input and output information to the MIR-
2.
It seemed that the Apple II machine that appeared in the seventies was also a specialized
computer.

Fig. 21. Apple II [34].

The fact is that in domestic programmer circles there were rumors about two American stu-
dents Steve Wozniak and Steve Jobs. They were said to have been kicked out of the company
where they worked part-time for playing computer games during working hours.
As a result, both students assembled a special computer for games in the garage, which they
called the Apple II. The display of this computer worked in alphanumeric and graphic modes,
which was its advantage. It was the Apple II (Fig. 21) that laid the foundation for modern per-
sonal computing, although there were previously computers like this one in a number of their
parameters. It’s important that the Apple II was actually a versatile and easy-to-use comput-
er. For example, it was used for serious imaging programs designed to manage the supply of
drugs in large hospitals.
Later, there was talk about what the future would belong to personal computers. This already
seemed incredible because it seemed that the future was in large computers like the Cray.,
This is probably the reasoning of IBM executives, who, according to rumors, refused to pro-
duce personal computers until offices for selling personal computers, appeared in the Corpo-
ration's buildings, and employees began to buy and use them for work. By the way, many
people were later convinced that Microsoft was a subsidiary of IBM.
However, it was personal computers that became the basis of the new computer world. Their
users became not only and not so much programmers, but also researchers of various catego-
ries, engineers, office workers. Although personal computers were produced all over the
world, the largest manufacturers in the eighties and the first half of the nineties were Apple
(Macintosh computers) and IBM (IBM PC computers (Fig. 22)).

Fig. 22. IBM PC [35].

Millions of computers were produced. The main qualities of personal computers allowed
them to conquer the world. These were compactness (a computer could be installed at every
workplace), comparative cheapness, reliability and ease of use (maintenance of personal
computers did not require a staff of electronics engineers, system programmers and opera-
tors), ease of software development, updating programs and installing new software, conven-
ient means of interaction with a computer and software.
The introduction of mass personal computers simply could not take place without the ap-
pearance of visual means of interaction, new devices and fundamentally new concepts of or-
ganizing the interface with the user, for example, such as the concept of “direct manipula-
tion”.
The concept of "direct action" was proposed in the early eighties by the well-known specialist
in the field of computational sciences, professor B. Shneiderman, who brought together and
analyzed new trends in the organization of the interface. Currently, this concept dominated in
the interface design [36].
B. Shneiderman defined the following characteristics of the interface, created on the basis of
the concept of "direct action":
1) Permanent display of the object of interest;
2) Physical actions (working with a mouse, joystick, touch screen, etc.,or using a functional
keyboard instead of commands with complex syntax);

3) Fast, step-by-step, returnable operations whose impact on the object of interest was im-
mediately visible.
The essence of this approach to creating an interface was to create the impression that the us-
er directly affected the objects presented on the screen, and did not conduct a dialogue with
the computer about these objects. Instead of using a command language to describe opera-
tions on objects, the user manipulated the visible representations of these objects on the dis-
play screen [36].
The use of personal computers by office workers, primarily managers of various levels and
their secretaries served as the basis for the emergence of such a concept as a metaphor of the
interface. The interface metaphor was considered as the basic idea of convergence and analo-
gy between application domain model objects and interactive objects. First of all, the inter-
face metaphor began to be used in the Desk Top metaphor variant.
This metaphor united real-world objects on the surface of an office worker's desk (for exam-
ple, folders with documents), as well as the iconic representation of programs and, most im-
portantly, "magic" operations, such as double-clicking the mouse to open folders and launch
programs. Interestingly, attempts to expand the desktop metaphor, to make the desk three-
dimensional with drawers and openable drawers, and also to develop a metaphor for the of-
fice room were not successful.
It is possible that the desktop metaphor was the basis for the powerful advancement of per-
sonal computing. All new versions of personal computers were released, and the old ones
were treated in a very peculiar way. At one time, a secretary competition was held in the Unit-
ed States, during which girls had to run to the fourth floor in heels with system units on their
hands and throw the system unit out of an open window. The winner was the girl whose sys-
tem unit fell first. There were also more useful ideas for using old computers. Their proces-
sors were used to compose distributed computing systems with zero cost.
Currently, millions and millions of both traditional personal computers and laptops, tablets
and smartphones are annually produced.

17. Computing networks
It is believed that the basis of the modern Internet was a network developed in the late sixties
and early seventies by order of the US Department of Defense Advanced Research Projects
Agency (DARPA) and designed to manage military facilities in the event of a nuclear war. It
should be noted that at the beginning of the seventies, networks were already actively used
connecting various computers. In our country, academician V.M. Glushkov proposed to use
computer networks for effective management of the national economy. Somewhat later, work
began on projects for global (nationwide) computer networks. However, due to the develop-
ment of networks, the idea was put forward that networks had to be used to transfer tasks
from a computer to a computer in approximately the same way as electricity is pumped. That
is at a time when it was already night in Vladivostok and computers were not loaded, they
could download programs from overloaded computing centers in Moscow. This seemed ridic-
ulous, since in the seventies and eighties computers were idle only during preventive mainte-
nance or failures. Therefore, although the projects of such networks were partially imple-
mented, they were not introduced into serious practice.
"Normal" computer networks began to work in our country at the end of the eighties and
were included in the world Internet. Ubiquitous email access was gradually implemented. Al-
ready in the nineties, together with search engines, it became possible to search, read and
download scientific publications posted on foreign sites. This was especially important, since
literally from September 1991 the foreign scientific journals ceased to arrive in scientific li-
braries and researchers in the first half of the nineties could only access them through their
Western colleagues. This was especially important, since literally from September 1991 the
foreign scientific journals were no longer available in scientific libraries.

The power of computer networks was low. So in order to download an article of 500-600 kil-
obytes in size, it took several hours, and sometimes you had to leave the download overnight.
The urgent transfer of files with visualization of important mathematical models from Yeka-
terinburg to Moscow demanded that all academic institutes and universities of the city were
disconnected from the Internet for half an hour. The fact is that the visualization was received
literally an hour before the opening of the academic exhibition in Moscow. The opening was
attended by the leaders of the Russian government and it was necessary to show them the lat-
est research results of the institute.
Later, the speed and quality of the Internet increased, social networks and online computer
games appeared. Around the same time, a cellular network based on different principles be-
gan to spread, but later, when “advanced” (smart) phones appeared, it became possible to ac-
cess the Internet from cell phones. Billions of people from all over the world became the In-
ternet users who had access to the Internet through personal computers, laptops, tablets and
phones. In scientific and non-scientific literature, the term "Internet addiction" appeared,
which described the fact that many users spend almost all their free (and not free) time on the
Internet.

18. Parallel computing
Already in the sixties, the use of parallel computing began for various applications. At this
time this area did not attract much attention from a wide range of developers and users.
However, by the second half of the eighties, new solutions appeared that made parallel com-
puting the most important direction of modern computing. Transputers, which included a
central processor and four communication channels for two-way exchange with other devices,
became effective devices for organizing parallel computing. Creation of parallel computers
based on transputers prompted the development of parallel programming tools, for example,
the Occam programming language.
 In the mid-nineties, a number of programs were adopted in the United States, within the
framework of which government support was provided for the creation of supercomputing
based on parallel computing. First of all, the nuclear national laboratories (Los Alamos, Liv-
ermore, Sandia), NASA research centers and the Ministry of Defense took part in the devel-
opment of parallel supercomputers. In these research organizations, a lot of attention was
paid to parallel supercomputing. The computer base was regularly updated. It was in these
centers that the use of graphics processing units (GPUs) and game console processors began
in the development of parallel computers.
In general, parallel programming depended on the used parallel architectures. MPI, a soft-
ware toolkit for providing communication between branches of a parallel application, could
be used for systems with distributed memory. MPI standed for Message passing interface.
The OpenMP parallel programming library could be used for shared memory systems.
In our country in the early nineties, despite difficult conditions, the development of parallel
computers and related software began. In the first half of the nineties, the academic and in-
dustry institutes and organizations of our country developed a parallel computer MVS 100.
Such computers worked in several organizations. Later, a series of MVS supercomputers was
developed, in particular, MVS 1000, installed in the Interdepartmental Supercomputer Cen-
ter and accessibled via remote access for a wide range of users [37]. Supercomputers were al-
so developed in a number of other organizations in the country. Domestic basic software was
created for domestic supercomputers, in particular, an operating system, a file management
system and the computer graphics tools.
Parallel supercomputers are now widely used all over the world. The rating of the most pow-
erful computers in the world is regularly published. Dozens of supercomputer centers have
also been created in our country. Supercomputing conferences are regularly held. Figure 23
shows the Russian supercomputer «Lomonosov» located at Moscow State University.

Fig. 23. Supercomputer "Lomonosov" in Moscow State University [38]

The use of such powerful computing technology led to problems due to the cost of electricity
and water for cooling. Californians were said to be protesting during the construction of new
centers, fearing a shortage of electricity and water. New methods of cooling computers were
being developed.
The widespread use of parallel supercomputers posed new challenges for visualizing the data
obtained to ensure the analysis and interpretation of the results. The huge volume of the re-
sulting files and the complexity of the parallel architectures set the task of organizing data
output for computer graphics systems. In the future, it was a need to develop tools for remote
and online visualization of parallel computing.
Since the end of the eighties, active development of software visualization tools has been car-
ried out visual parallel programming languages, visual correctness debuggers and efficiency
debuggers for parallel programs in connection with parallel computing. The latter were used
to predict, find and avoid possible inefficiency in the execution of parallel programs.
It is interesting that in the early nineties visualization system for the Avatar software was de-
veloped [39], actively using virtual reality tools and metaphors of a room and a building in a
three-dimensional version and operating on the basis of a virtual reality environment such as
CAVE. The Avatar system was designed for debugging the performance of parallel programs
and allowed presenting large amounts of data on the performance of parallel processes ob-
tained during the operation of a supercomputer. In the course of work, the user seemed to be
inside a three-dimensional room, on the walls of which the video image was projected. Curves
describing the performance metrics of parallel programs in the form of two-dimensional
graphs were displayed on the floor and walls of this room. The view was similar to a glass sky-
scraper, consisting of rooms, each of which contains graphical output characterizing various
aspects of the described parallel program behavior. A transparency mode was provided for
the ceiling and floor, which made it possible to see adjacent data in adjacent "rooms". A visual
display was defined a "history tape", to represent the sequence of the supercomputer proces-
sors. A "virtual flight" over a skyscraper based on this tape made it possible to explore aggre-
gate data on the performance of an applied parallel program.
More details about virtual reality will be discussed in the next section.

19. Virtual reality systems
Virtual reality is a historical term that refers to a computer-generated environment using spe-
cial devices such as special helmets (glasses) Fig. 24), screens with the illusion of three-
dimensionality, CAVE systems (Fig. 25) (virtual reality environments in which images are
projected on the walls, floor and ceiling of the room). These devices allow to create a special
environment, that is perceived by the user as the real world, in which he really is (but does
not observe from the outside) and with which he interacts directly, as well as with the ordi-
nary world.

Fig. 24. Modern virtual reality glasses, inside view [40].

Fig. 25. Virtual reality system CAVE-2 [41].

In the literature you can find information that the first virtual reality system was developed
by Ivan Sutherland, one of the founders of computer graphics. However, it seems that virtual
reality traced its history back to aviation simulators, in which elements of flight simulation
and even air combat were displayed on large screens (in our country) or on special helmets
(in the USA). It was these helmets that served as the basis for the first virtual reality systems
in the eighties.
In the late eighties and early nineties virtual reality environments were used both for com-
puter visualization tasks and in simulators. The use of these media for games and entertain-
ment also began. The project of a virtual wind tunnel implemented at NASA for the design
and testing of the Shuttle spacecraft is the great interest to us. Since it was impossible to con-
duct tests in a conventional wind tunnel for such an apparatus as the Shuttle, a full-fledged
model was created and displayed in a virtual environment. The researchers could change the
parameters of the model and see the results [42]. By the way, in 1994 in Nizhniy Novgorod a
very interesting report on a virtual wind tunnel for Shuttles was made by S. Bryson ,the lead
developer of the system, at the Graphikon conference.
 A generalization of the idea of a virtual wind tunnel was the idea of a virtual test bench for
those studies in which a full-scale experiment was either difficult to organize or impossible.
In these interactive systems, it was necessary to provide the ability to repeatedly run a pro-
gram that simulated processes with different parameters. In systems of a virtual test bench, it
was supposed to carry out computational experiments to simulate such complex technical ob-
jects as spaceships, rockets or airplanes with visualization of the results by means of virtual
reality. Computer simulation usually required the use of parallel and distributed computing.
There was a need to use virtual reality in online visualization mode [43, 44].
Virtual reality was actively used in software visualization systems. These systems often used
visualization metaphors, for example, the metaphor of the city [45, 46]. The visualization
metaphor was understood as the main idea of object representation, which helped the percep-
tion of visual images.
Also in the nineties, the development of augmented reality tools began, overlaying computer-
generated images on real objects. It became possible to use augmented reality tools to organ-
ize technological processes for assembling complex devices. The assembly technician could
receive visual cues, which made his work easier and more efficient.

Currently, virtual reality environments are used for entertainment, educational, scientific and
therapeutic purposes. For example, virtual reality systems are being developed that make it
possible to treat phobias by gradually bringing a person into contact with a frightening object.
The most important phenomenon associated with virtual reality is the phenomenon of pres-
ence. Presence refers to the feeling of being in a virtual environment as if it were real. This
experience is described as “being there” [47].
Already in the nineties, predictions appeared that humanity would soon move to the virtual
world. At the same time, virtual reality environments and the virtual world of the Internet, in
which millions of users "sit", are often confused. These predictions are actively disseminated
to this day. It seems that the authors do not fully understand the essence of virtual reality as a
tool for human-computer interaction.
We also note some limitations when using virtual reality associated with possible unpleasant
and even painful sensations that may be caused by the user. This may be due to manifesta-
tions of cyberbullying (cybersickness is a health disorder similar to seasickness). Cyber dis-
ease is often associated with the inability to manage virtual reality events actively [47].

20. Natural interfaces
There are several definitions of natural interfaces. In some cases, it is assumed that user op-
erations are intuitive and based on natural everyday behavior. Others talk about a virtually
invisible interface based on natural elements (or becoming one after the user has mastered
it).
 In this article, natural interfaces are understood as interfaces based on fixation and recogni-
tion of any human movements’ combination or the activity of his organs.
Natural interfaces provide “head-to-toe” interaction. In particular, the following interfaces
can be distinguished:
 Brain-computer interface;
 Interfaces based on the direct use of nerve impulses;
 Interfaces based on speech recognition;
 Interfaces based on lip recognition;
 Interfaces based on recognition of facial expressions;
 Interfaces based on recognition of gaze movement (Eye Gaze or Eye Tracking);
 Tactile interfaces as well as interfaces that give tactile feedback (allowing you to feel

touch);
 Interfaces based on motion capture of the entire human body or individual organs (head,

entire arm, hands, fingers, legs);
 Interfaces based on motion capture tools, in particular, foot-operated computer interfac-

es;
 Sign interfaces, sign languages.

In this case, it is necessary to take into account the possibility of combining several natural
human activities within the framework of one implementation.
Brain-computer interfaces are based on the recognition of the brain's own electrical activity,
associated, in particular, with the movements of the arms and legs and the formation of
commands to move real or virtual objects (Fig. 26). This direction has been actively develop-
ing over the past decades both abroad and in our country. There are interesting results on the
use of interfaces of this type in virtual and augmented reality systems both for manipulating
objects and for navigating in virtual space.

Fig. 26. Brain-computer interface [48].

Interfaces based on the direct use of nerve impulses can be used to develop new types of pros-
theses (Fig. 27). There are also known examples of hand prostheses built on the basis of neu-
rocomputer interfaces.

Fig. 27. Video frame of manipulation of a hand prosthesis controlled

 by neurocomputer interface [49].

Speech recognition is one of the most popular applications of artificial intelligence ideas. The
real results have been obtained in this direction. Existing applications are already used in
everyday life (for example, requests to mobile devices, elevator control, etc.). Interfaces based
on lip recognition can be considered as auxiliary, allowing toimprove the accuracy of speech
recognition systems (Fig. 28).

Fig. 28. Interface based on speech recognition [50].

Recognition of the direction of gaze and human facial expressions can be used to organize
human-computer interaction in visualization systems (Fig. 29).

Fig. 29. Interface based on eye tracking [51].

On the helmets used in flight simulators, which served as the basis for virtual reality systems,
the image was adjusted depending on the direction of the pilot's gaze. Interfaces based on
recognition of facial expressions and direction of gaze are also being developed to provide
communication for people who have lost the ability to move or even speak. Recently, the use
of gaze recognition-based interfaces in games has become popular. These interfaces are often
used in conjunction with other types of natural interfaces.
Tactile interfaces can be interesting in connection with the creation of gesture interfaces and
providing feedback when working in virtual reality environments and with "large" screens
(Fig. 30, 31).

Fig. 30. The example of tactile interface for driving a car [52].

Fig. 31. Multi-finger tactile interface. A device that allows to simulate

the tactile sensations of touching soft objects [53].

When organizing movement in virtual space, natural interfaces are widely used, based on fix-
ing and recognizing movements of the entire human body or individual organs.
In the first period of the development of virtual reality environments, special suits were used
to fix the movements of the legs. Special panels and platforms were actively used, steps and
movements along which were associated with movements in virtual space. Real walking was
proposed as a way to organize movement in a virtual environment. On the other hand, it is
possible that movement in abstract virtual spaces is easier to organize through virtual flight.
Recall that moving in a virtual space that is beyond the user's control can cause him unpleas-
ant sensations, described by the concept of cyber-disease. Natural interfaces were developed
based on the use of leg movements (Fig. 32, 33). In this case, the hands remained free.

Fig. 32. The example of "foot" interface [54].

Fig. 33. The example of "foot" interface (another view) [54].

Multimodal natural interfaces were also developed, in which several methods of human-
computer interaction are used at once as hand gestures, leg movements, gaze fixation, tactile
interfaces.
Gesture interfaces can be divided into two types such as static, when a certain set of fixed
hand positions is presented, and dynamic, when the system perceives and analyzes move-
ments of the hands or other parts of the body. The analysis is based on motion capture, which
is based on the methods used in the theory of image processing and belongs to the field of
technical vision. Gesture interfaces can be used in medical applications, for example, to en-
sure the safety of physicians when examining a patient. Gesture interfaces are also used for
control in virtual and augmented reality environments (Fig. 34).
When using sign interfaces, it is important to develop sign languages to assist users in their
activities [55].

Fig. 34. Video frame of control of a quadcopter [56].

21. Activity-based approach to the interface design
When designing interfaces, a serious analysis of business aspects of future users is required.
At the stage of "maintenance" and revision of the system, it is necessary to understand how
the activities of users have changed after the computerization of their work. First of all, the
theory of activity, developed in our country in the middle of the 20th century is associated
with the names of A.N. Leontiev [57] and S.L. Rubinstein [58]. Publications suggesting the
use of activity theory in the design and development of human-computer interfaces began to
appear in the second half of the eighties - early nineties of the last century. The prominent
Russian scientist V. P. Zinchenko [59, 60] should be noted as the pioneers of this direction.
An activity-based approach to interface design implies a serious analysis of the activities of
future interface users. It is necessary to understand how the users' activities have changed af-
ter the computerization of their work at the stage of "maintenance" and refinement of the in-
teraction system.
In connection with the activity approach, instrumental interfaces are considered. Instrumen-
tal interfaces are understood as interfaces for specialists in any field, who use them as a
means for carrying out their professional activities, as well as mass interfaces-general-
purpose tools, for example, for booking and ticketing systems, using banking, social and gov-
ernment services and etc. For such interfaces, the design approaches and quality criteria used
for entertainment sites or social networks are not very applicable.
An activity-based approach to the design of human-computer interaction for a specific prob-
lem involves a deep study of the future users’ work in a "pre-computer" version, an analysis of
all emerging issues and a description of activities to solve them. It is important to identify the
main goals and motives of this activity, describe the individual stages of the activity and iden-
tify of all entities that employees deal with. It also requires an “activity-based” analysis of the
new situation that occurs after the computerization of work.
The quality criterion for instrumental professional interfaces can be evaluated through the
number of people satisfied with the work of the institution for a given period of time. In other
words, we consider the number of clients, buyers, patients, etc., who have received a satisfac-
tory result and have not received serious stress. Stress can be measured both by direct meth-
ods for users of professional interfaces, by users’ direct and indirect methods of mass inter-
faces and visitors to institutions. It can also be assumed that the stress level of the profession-
al using this interface influences the user's stress level due to possible delays, disruptions in
work and general irritation. The practice of real computerization gives us examples of good
and bad results [61].
It seems that the activity-based approach to interface design has very great prospects. Such
interfaces can become the basis for the development of modern convenient and reliable hu-
man-computer interaction environments in the most important areas of people’s life and ac-
tivity.

22. Bulk interfaces
Bulk interfaces will mean mass tool interfaces such as entertainment, social media, game in-
terfaces and mobile device interfaces.
The class of mass instrumental interfaces includes interfaces intended, in particular, for
booking and ticket purchasing systems, using medical, banking, social and government ser-
vices and etc.
In the case of mass instrumental interfaces, the designer, by formulating the requirements for
the interface, participates in the formation of future activities. The user cannot refuse to use
the corresponding system, because through it he gains access to services, resources, infor-
mation and so on that are important for his life . The mass instrumental interface should fo-
cus on the "weak" link, that is it should be successfully handled by a person with minimal ca-
pabilities for inputting, perceiving and analyzing information [61].

However (as mentioned above) the design methods and evaluation criteria applied for “con-
sumption interfaces” are not applicable in cases of “instrumental” interfaces. "Entertainment"
interfaces are not usually related to purposeful activities. Their developers set themselves the
task of drawing users' attention to any incentives in order to achieve the desired response to
customers. However, the activity-based approach is also applicable to the design of infor-
mation and advertising sites, although their visit by the user is not an activity. The user acts
as an object of the owner’s activity (placeholder, customer) website’s. It is for the owner that
we can build both a goal and motivation and define actions and operations. However, the lat-
ter may not be defined very clearly, since the activity aimed at a person cannot be accurately
programmed.
In many cases, one way or another users of modern interfaces require programming activi-
ties. Note the fact that the designers do not clearly describe (and perhaps even they do not re-
alize) the rules, the "programming language" and the "virtual device" itself, which must be
"programmed".
The next, already modern stage in the development of interfaces is connected with the Inter-
net. Entertainment sites, e-commerce and e-service delivery sites have become an important
source of interface design ideas. Interface quality ratings have also become largely associated
with e-commerce performance ratings and the effectiveness of advertisements posted on
websites. The effectiveness of the latter can be assessed primarily by the number of "clicks"
on an advertising banner. It seems that this is an important reason for the dominance of the
stimulus-response model in assessing the quality of interfaces (behavioristic in its essence).
Bulk interfaces can be evaluated based on usability criteria. In this case, subjective methods
of assessing the quality of interfaces and sites are used based on a survey of a small number of
users, which are combined with an analysis of the quality of design and its ergonomics. In ad-
dition to this, instrumental techniques for tracking the movement of the eye across the screen
(eye tracking) are added.
Traditionally, developers talk a lot about friendly and intuitive interfaces. The system has an
intuitive interface (intuitively usable or usable at an intuitive level), if the user's unconscious
application of knowledge available to him leads to effective interaction with it [62].
We should pay special attention to the interfaces of computer games. Such games appeared in
the seventies and they were initially used as text-based information. Then games using com-
puter graphics began to develop actively. However, the graphics were quite primitive and the
players did not pay attention to this, for example, the three-pixel men in the background,
simply because they focused on what was happening in the foreground. In the eighties, mil-
lions of people around the world already played computer games.
The game’s interfaces influenced the developers of the visualization systems who borrowed
from there a number of ideas (metaphors for visualization). Modern games have started to
use virtual reality. At one time, it was claimed that such games would displace all others, but
this has not happened so far and, probably,it will never happen. Note that game interfaces
can use input devices such as gamepads and joysticks, as well as keyboards specially designed
for "gamers". Game development experts believe that a good game interface is one that the
player does not notice. However, sometimes the complexity of interfaces can be part of the
gameplay (the component of the game that is responsible for the interaction between the
game and the player). Games on mobile devices (as well as the use of mobile devices in gen-
eral) also have a large impact on users and, therefore, influence the development of mass in-
terfaces. The interaction techniques that users have been familiar with since childhood should
be taken into account when creating both mass and specialized interfaces.

23. Conclusion
The history of modern computing is almost 80 years. New computer technologies are con-
stantly emerging, for example, cloud computing, which gives access to configurable compu-
ting resources, or 3D printing, which allows you to create ready-made parts of complex ma-

chines, as well as "print" fragments of human organs and tissues on a cellular basis. Now eve-
ryone is hearing about quantum computing, which uses quantum mechanical phenomena to
perform computations. Due to the development of modern computing, the task of processing
and analyzing "big data" has become in demand. Modern approaches to creating artificial in-
telligence based on neural networks have gained immense popularity.
The question of human-computer interaction is still relevant. This is due to the fact that if in
the first two decades of its development, computers were used by thousands of programmers
around the world, today they are used in one form or another by billions of people, including
millions of specialists, programmers of various levels and IT specialists, scientists, doctors,
engineers, teachers, bank employees, office workers etc.
One of the approaches to ensuring more efficient human-computer interaction is the use of
natural languages. Moreover, in the sixties and seventies, programming tools based on natu-
ral languages were even developed. However, due to the large volume and ambiguity of natu-
ral language dictionaries and their complex syntax, it is very difficult to provide accurate
recognition of natural texts.
In 1978, academician A.P. Ershov suggested using a subset of the natural Russian language - "
clerical Russian", the language of reports, statements and questionnaires as the basis of the
language of interaction with a computer. In his first report on this topic, A.P. Ershov used the
invention of K.I. Chukovsky, the word "cancelyarit", and then used the more scientific term
"language of business prose". This language is characterized by a relatively small vocabulary
(about three thousand words), rather precisely with fairly well- defined syntax and semantics.
In other words, the words and concepts of "clerk" have precisely defined meanings, and the
phrases of reports and statements are written according to the established scheme. The lan-
guage of business prose is natural for many specialists in the field of management, and in this
area, a fairly effective interaction of a person with a computer on its basis is possible. In this
case, the implementation of texts’ recognition with a limited vocabulary and clearly defined
syntax and semantics is greatly simplified [63, 64]. Work in this direction was carried out un-
til the nineties. However, the development of modern information technologies in the field of
business management has reduced the relevance of these developments.
At the same time, natural human-computer interaction remains an important element of
modern computing. For example, much attention is now being paid to voice interaction with
a computer using elements of natural language.
It seems that the naturalness of interaction should be linked to the main activities of future
users, taking into account their experience in using information technologies. For example, it
would be useful for design engineers and designers of complex equipment to combine design
automation tools (CAD), mathematical modeling packages using the resources of modern su-
percomputers (for example, Logos [65]), as well as visualization tools based on virtual reality
in a single interactive system. Prototypes of such systems are already being developed, alt-
hough the creation of full-fledged design environments is still a promising goal. In this case,
the development of the correct interface and methods for the visual presentation of design
objects becomes an important task.
The development of “correctness” criteria requires the additional analysis. Experience shows
that optimized user loading can be a negative factor, for example, for surgeon’s workstation
interfaces. In this case, the surgeon may become overloaded with interface management dur-
ing the operation, as a result of which less attention is paid to the operation progress and the
patient's condition.
And more about interfaces. Modern device control methods make it possible to control vehi-
cles using buttons and touch screens, but will hundreds of millions of drivers abandon tradi-
tional steering wheels, pedals and gear knobs? In the case of interfaces for full-fledged com-
puter control of complex technical objects, it is necessary to take into account the functioning
of these objects, as well as the tasks of their control. Interface design requires serious
knowledge from the developer in various fields.

One comment needs to be made. In terms of the main fields of activity related to computing,
the main focus is on information technology. Of course, information technology is an im-
portant component of the modern world. However, it must be remembered that in industry,
production technologies are secondary in relation to the design of equipment and certainly in
relation to research and experimental development. In the field of computing for our country,
the development of computer science should come first and technologies should be the result
of our own research and experimental development in the field of software.
In this case, we will be able to achieve the technological independence and not follow the new
western technologies.
The development of computer science requires the training of scientific personnel and serious
efforts in maintaining existing and creating new scientific schools. Computer science educa-
tion should include mathematical disciplines related to both continuous and discrete mathe-
matics, as well as serious knowledge in various areas of software along with gaining experi-
ence in real development. The same knowledge is required for software developers for hu-
man-computer interaction and visualization. For example, mastering the elements of photo-
realistic graphics requires knowledge in such a mathematical discipline as equations of math-
ematical physics, and for serious developments in system programming, knowledge in dis-
crete mathematics and mathematical logic is required. When developing specialized systems
for scientific imaging or imaging for medical purposes, it is necessary to listen to short cours-
es of lectures on the relevant topic. Knowledge of computer psychology or semiotics, the sci-
ence of sign systems may also be necessary.
Developers must have a wide range of scientific background to be ready to grasp new ideas.
Thus, not only scientists in the field of computer science, but also the developers of software
systems intended for scientific computing, along with knowledge and skills in information
technology, should have a very university scientific background, possibly with further special-
ization in specific sections.
And the last thing. At the dawn of the computer era, the father of cybernetics Norbert Wiener
warned of the possibility of a new technology for those times leaving the control of its crea-
tors. Wiener spoke about William Jacobs' fantastic story "Monkey Paw", which tells about a
talisman in the form of an enchanted monkey's paw, which can grant wishes, and , moreover,
they are fulfilled in such a way that they bring terrible misfortune to the owner. At the same
time, formally, the desires are fulfilled with accuracy, although not at all in the way the “cus-
tomer” can imagine [66].
Norbert Wiener feared that computers without knowledge of human values and priorities
would spiral out of control and bring misery to humanity like a monkey's paw. Then there was
a lot of talk about whether computers can think and whether they will try to conquer humani-
ty. Then there was a lot of talk about whether computers could think and whether they would
try to conquer humanity. But even then, and even in the seventies, computers were under the
complete control of programmers, therefore despite the development of the mathematical
field of "artificial intelligence", Wiener's warnings seemed redundant. Today, there is a lot of
talk again about artificial intelligence, which is implemented on the basis of neural networks.
They say that computers and robots will replace humans in almost all areas of activity. It's
time to remember the science fiction books of the fifties. First of all, the three laws of robotics,
which were invented by the remarkable American writer Isaac Asimov [67].
These laws describe the ethics of interaction between humans and robots with artificial intel-
ligence. The main goal of the laws, enshrined in the very design of the robots’ electronic brain,
is to prevent harm to humans, including those caused by the order of this or another person.
In modern descriptions of artificial intelligence, little attention is paid to this issue. Using ar-
tificial intelligence without analyzing possible dangers can lead to serious problems. To over-
come the effect of the monkey's paw, that is the soulless execution of algorithms and com-
mands, it is necessary to describe ethics, as well as knowledge regarding human values. In
other words, large-scale research and development is required to implement real artificial in-
telligence.

References
1. Knuth D.E. Von Neumann's First Computer Program // Computer Surveys, Vol. 2, No, 4.

1970, p. 247-260.
2. Creators of the first Soviet computers. https://odnarodyna.org/content/tvorcy-pervyh-

sovetskih-evm, (Accessed August 20, 2020).
3. Computer «Strela». http://informat444.narod.ru/museum/1_17_4_strela.htm, (Ac-

cessed August 20, 2020).
4. Cathode-ray tube of the computer "Strela",

https://polymus.ru/ru/museum/fonds/stock/trubka-elektronno-luchevaya-ln-4-evm-
strela-122446/, (Accessed August 20, 2020).

5. Information carriers from antiquity to the present day.
http://www.computerhistory.narod.ru/nositeli_inf.htm, (Accessed August 20, 2020).

6. Computers in the USSR. https://visualhistory.livejournal.com/618431.html, (Accessed
August 20, 2020).

7. Evolution of operating systems. https://ppt-online.org/94609, (Accessed August 20,
2020).

8. Virtual computer museum. https://www.computer-museum.ru/articles/personalnye-
evm/897/, (Accessed August 20, 2020).

9. Teleprinter. https://en.wikipedia.org/wiki/Teleprinter , (Accessed August 20, 2020).
10. DataArt Museum. Video terminal ADM-3A.

https://habr.com/ru/company/dataart/blog/453956/, (Accessed August 20, 2020).
11. Vojskunskij A. E. YA govoryu, my govorim… Moskva, Znanie, 1982.
12. The future of computer models in the fashion industry and beyond.

https://infuture.ru/article/1248, (Accessed August 20, 2020).
13. Plotter. First half of the seventies. https://images.app.goo.gl/vxHkXaKkw8cHYj5o7, (Ac-

cessed August 20, 2020).
14. Première phase d'avancement : la fonction vectorielle,

http://jeanpierre.rousset.free.fr/Informatique/Noyau_Graphique/preambule_comment
s.html, (Accessed August 20, 2020).

15. Interesting Facts. History. https://tunnel.ru/post-interesnye-fakty-istoriya, (Accessed
August 20, 2020).

16. Matematicheskoe obespechenie grafopostroitelej. I uroven': SMOG: Instrukciya po pro-
grammirovaniyu. / Pod red. YU.A. Kuznecova. – Novosibirsk: VC SO AN SSSR, 1976.

17. Bayakovskij YU.M., Galaktionov V.A., Mihajlova T.N. Grafor. Graficheskoe rasshirenie
fortrana. M.: Nauka. 1985.

18. Averbuh V.L., Karakina I.V., Podergina N.V., Ponomareva L.S., Samofalov V.V., Solov'eva
L.A. Realizaciya graficheskoj dialogovoj sistemy GRADIS // Avtometriya, 1978, № 5, s.
41-47.

19. The Emergence Of Software Engineering.
https://www.macmillanihe.com/blog/post/software-engineering-history-gerard-
oregan/, (Accessed August 20, 2020).

20. Cray-1. https://ru.wikipedia.org/wiki/Cray-1 , (Accessed August 20, 2020).
21. Scientific Society GraphiCon. https://www.graphicon.ru/ , (Accessed August 20, 2020).
22. Bondarev A.E., Galaktionov V.A., Chechetkin V. M. Analysis of the Development Con-

cepts and Methods of Visual Data Representation in Computational Physics / Computa-
tional Mathematics and Mathematical Physics, 2011, Vol. 51, No. 4, pp. 624–636.

23. Cabral B., Hunter C.L. Visualization Tools at Lawrence Livermore National Laboratory //
Computer, 1989. Vol. 22, No.8. Pp. 77-84.

24. Shu N.C. Visual Programming : Perspectives and Approaches // IBM System Journal.
Vol. 22, No 4, 1989. pp. 525-547.

25. Brown M. Algorithm Animation. The MIT Press, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1988.

https://odnarodyna.org/content/tvorcy-pervyh-sovetskih-
https://odnarodyna.org/content/tvorcy-pervyh-sovetskih-
https://polymus.ru/ru/museum/fonds/stock/trubka-elektronno-luchevaya-ln-4-evm-strela-122446/
https://polymus.ru/ru/museum/fonds/stock/trubka-elektronno-luchevaya-ln-4-evm-strela-122446/
http://www.computerhistory.narod.ru/nositeli_inf.htm
https://visualhistory.livejournal.com/618431.html
https://ppt-online.org/94609
https://www.computer-museum.ru/articles/personalnye-evm/897/
https://www.computer-museum.ru/articles/personalnye-evm/897/
https://habr.com/ru/company/dataart/blog/453956/
https://infuture.ru/article/1248
https://images.app.goo.gl/vxHkXaKkw8cHYj5o7
https://tunnel.ru/post-interesnye-fakty-istoriya
https://www.macmillanihe.com/blog/post/software-engineering-history-gerard-oregan/
https://www.macmillanihe.com/blog/post/software-engineering-history-gerard-oregan/

26. Stasko J.T. Tango: A Framework and System for Algorithm Animation // IEEE Comput-
er. Vol. 23, No 9 (September 1990). Pp.27-39.

27. Price B.A., Small I.S., Baecker R.M. A Taxonomy of Software Visualization // IEEE Com-
puter Society Press Reprint. 1992.

28. Averbuh V.L. Vizualizaciya programmnogo obespecheniya. Konspekt lekcij. Ekaterin-
burg. Matematiko-mekhanicheskij fakul'tet. Ural'skij Gosudarstvennyj Universitet. 1995.

29. Software Visualization. From Theory to Practice. Edited by Kang Zhang. KLUWER ACA-
DEMIC PUBLISHERS. Boston, Dordrecht, London. 2003.

30. Diehl, S. Software visualization: visualizing the structure, behaviour, and evolution of
software. Springer, 2007.

31. Gantt chart.
https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%
D0%BC%D0%BC%D0%B0_%D0%93%D0%B0%D0%BD%D1%82%D0%B0 , , (Accessed
August 20, 2020).

32. Radar chart. https://en.wikipedia.org/wiki/Radar_chart, (Accessed August 20, 2020).
33. Watch What I Do. Programming by Demonsration / Ed.- Allen Cypher / MIT Press.

Cambridge, (Mass.), 1993.
34. Apple II. https://ru.wikipedia.org/wiki/Apple_II , (Accessed August 20, 2020).
35. IBM PC. https://ru.wikipedia.org/wiki/IBM_PC, (Accessed August 20, 2020).
36. Shneiderman B. The future of interactive systems and the emergence of direct manipula-

tion // Behaviour & Information Technology. 1 (3). 1982. Pp. 237-256.
37. Zabrodin A.V. Super EVM MVS-100, MVS-1000 i opyt ih ispol'zovaniya pri reshenii

zadach mekhaniki i fiziki // Matem. Modelirovanie, 12:5 (2000). Str. 61-66.
38. The Russian supercomputer Lomonosov-2 will increase its capacity from three to five

petaflops. http://informaticslib.ru/news/item/f00/s06/n0000622/index.shtml, (Ac-
cessed August 20, 2020).

39. Reed D., Scullin W., Tavera L., Shields K., Elford Ch. Virtual reality and parallel systems
performance analysis // IEEE Computer, November 1995, vol. 28, no. 11. Pp. 57-67.

40. Modern virtual reality glasses, inside view.
http://i.playground.ru/i/blog/111810/content/n6yrdswz.jpg, (Accessed August 20,
2020).

41. Monash CAVE2.
https://www.monash.edu/researchinfrastructure/mivp/access/facilities/cave2, (Ac-
cessed August 20, 2020).

42. Bryson, S. Virtual Environments in Scientific Visualization. VRST '94 Proceedings of the
conference on Virtual reality software and technology. Pp. 201-220. 1994

43. Averbuh V.L., Averbuh N.V., Bahterev M.O., Vasyov P.A., Zyryanov A.V., Manakov D.V.,
Starodubcev I.S., SHCHerbinin A.A., Sistemnye i vizualizacionnye predposylki sozdaniya
virtual'nogo ispytatel'nogo stenda // Voprosy oboronnoj tekhniki. Seriya 14. 2012.
Vypusk 2, str. 20-26.

44. Vasyov P.A., Voprosy vybora arhitektury interaktivnogo vzaimodejstviya s parallel'nymi
programmami // Parallel'nye vychislitel'nye tekhnologii (PaVT'2010): Trudy mezhdu-
narodnoj nauchnoj konferencii (Ufa 29 marta - 2 aprelya 2010 g.). [Elektronnyj resurs]
CHelyabinsk. Izdatel'skij centr YUurGU, 2010, s. 658-658.

45. Vincur J., Navrat P., Polasek I. VR City: Software Analysis in Virtual Reality Environment
// 2017 IEEE International Conference on Software Quality, Reliability and Security
Companion, pp. 509 – 516.

46. Merino L., Ghafari M., Anslow C., Nierstrasz O. CityVR: Gameful Software Visualization
// IEEE International Conference on Software Maintenance and Evolution (ICSME TD
Track). 2017, pp. 633-637.

47. Averbuh N.V., Psihologicheskie aspekty fenomena prisutstviya v virtual'noj srede // Vo-
prosy psihologii. 2010. № 5. S. 105-113.

https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B0_%D0%93%D0%B0%D0%BD%D1%82%D0%B0
https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B0_%D0%93%D0%B0%D0%BD%D1%82%D0%B0
https://en.wikipedia.org/wiki/Radar_chart
https://ru.wikipedia.org/wiki/IBM_PC
http://informaticslib.ru/news/item/f00/s06/n0000622/index.shtml
http://i.playground.ru/i/blog/111810/content/n6yrdswz.jpg
https://www.monash.edu/researchinfrastructure/mivp/access/facilities/cave2

48. Brain-Computer Interface Detects Patient’s Thoughts and Responses.
https://www.eletimes.com/brain-computer-interface-detects-patients-thoughts-
responses, (Accessed August 20, 2020).

49. DARPA’s Brain-controlled Prosthetic Arm and a Bionic Hand That Can Touch.
https://singularityhub.com/2013/07/24/darpas-brain-controlled-prosthetic-arm-and-a-
bionic-hand-that-can-touch/, (Accessed August 20, 2020).

50. RealSpeaker reads lips. https://iz.ru/news/547160, (Accessed August 20, 2020).
51. What is eye tracking? https://www.pantechsolutions.net/blog/what-is-eye-tracking/,

(Accessed August 20, 2020).
52. BMW HoloActive Touch: innovative interface for interacting with the vehicle.

https://3dnews.ru/944494, (Accessed August 20, 2020).
53. A new device has been created that allows you to simulate the tactile sensations of touch-

ing soft objects. http://ve-group.ru/sozdano-novoe-ustroystvo-pozvolyayushhee-
imitirovat-taktilnyie-oshhushheniya-prikosnoveniya-k-myagkim-predmetam/, (Accessed
August 20, 2020).

54. Foot Mouse & Foot Keyboard. http://octopup.org/computer/foot-control, (Accessed Au-
gust 20, 2020).

55. I. Starodubtsev, V. Averbukh, N. Averbukh, D. Tobolin, Professional Natural Interfaces
for Medicine Applications // Communications in Computer and Information Science /
Ed. by C. Stephanidis. Springer International Publishing, 2014. Vol. 435. P. 435-439.

56. Video of gesture control of a quadcopter.
https://www.youtube.com/watch?v=ybVV5ulGtos, (Accessed August 20, 2020).

57. Leont'ev A.N. Deyatel'nost'. Soznanie. Lichnost'. M., Politizdat. 1975.
58. Rubinshtejn S.L. Osnovy obshchej psihologii. - SPb. Piter, 2005.
59. Zinchenko V.P. Ergonomika i informatika // Voprosy filosofii. 1986. № 7. S. 53-64.
60. Zinchenko V. P. Activity theory: Retrospect and prospect // Proceedings "EAST-WEST"

International Conference on Human-Computer Interaction: EWHCI'92. 4-8 Aug., 1992,
St.-Petersburg, Russia. M. ICSTI, 1992. Pp. 1-5.

61. Averbuh V.L., Averbuh N.V., Najmushina A.V., Semenishchev D.V., Tobolin D.YU.
Deyatel'nostnyj podhod pri proektirovanii cheloveko-komp'yuternogo vzaimodejstviya:
Na primere medicinskih interfejsov. Izd. 2. M., URSS. 2019.

62. Blackler A.L., Hurtienne J. Towards a unified view of intuitive interaction: definitions,
models and tools across the world // MMIInteraktiv, 13 (2007). Pp. 36-54.

63. Ershov A.P. K metodologii postroeniya dialogovyh sistem. Fenomen delovoj prozy. – No-
vosibirsk, 1979. – 24 s. – (Prepr./ AN SSSR, Sib. otd-nie; VC; № 156).

64. Ershov A.P. Delovaya proza kak predmet obshcheniya s mashinoj na estestvennom
yazyke// CHelovek i mashina. Sb. publ. vystupl. – M.: Znanie, 1985. – S. 8–16. – (Novoe
v zhizni, nauke, tekhnike. Ser. "Matematika, kibernetika", № 4).

65. http://logos.vniief.ru/products/
66. Viner N. Kibernetika, ili Upravlenie i svyaz' v zhivotnom i mashine. / Per. s angl. I.V.

Solov'eva i G.N. Povarova; Pod red. G.N. Povarova. – 2-e izdanie. – M.: Nauka; Glavnaya
redakciya izdanij dlya zarubezhnyh stran, 1983. – 344 s.

67. Azimov A. YA, robot / M.: Eksmo, 2019.

