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Abstract 
The article deals with the problem of initializing the field of the signed distance function 

to the surface of a moving solid body of arbitrary shape. A combined algorithm is proposed 
for fast calculation of approximate values of a function with a controlled loss of accuracy. The 
idea is to interpolate the function over the cells of an adaptive grid with local switching to find 
the distance to surface triangulation. This algorithm can be used both for visualizing the mo-
tion of surfaces and for solving various geometric problems arising in the process of numeri-
cal modeling of physical processes. The error in determining the function does not depend on 
the shape of the body and the features of the movement trajectory. The paper contains a de-
scription of an algorithm for generating an interpolation grid taking into account a given 
computational error and an algorithm for calculating the signed distance to triangulation us-
ing a binary search tree. Using the examples of processing a spherical surface and a cruise 
missile model, the possibility of using a combined approach for visualizing the motion of solid 
bodies and in numerical calculations of gas-dynamic flows is demonstrated. 

  
Keywords: signed distance field, data visualization, level-set method, surface triangula-

tion. 

 

1. Introduction 
In solving a wide range of scientific problems related to geometric modeling, computer ani-
mation, image processing, simulation of physical processes and visualization of the results of 
numerical experiments, the signed distance function is used to describe the shape of bodies 
[1]. The body geometry 𝛺 with a boundary 𝜕𝛺 (fig. 1) is specified by a function 𝜙𝜕Ω(𝒙), that 
takes positive values in the external subdomain 𝛺+ and negative values in the subdomain. 𝛺− 
inside the body. The zero isosurface 𝜙𝜕Ω corresponds to the body boundary. 
 

 
Fig. 1. Determination of the signed distance function for the sphere surface. 
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The absolute value of the function is equal to the shortest distance to the body boundary: 

𝜙𝜕Ω(𝒙) = {

𝑖𝑛𝑓𝒙𝑩∈𝜕Ω‖𝒙 − 𝒙𝑩‖ , 𝒙 ∈ 𝛺
+

0, 𝒙 ∈ 𝜕Ω
−𝑖𝑛𝑓𝒙𝑩∈𝜕Ω‖𝒙 − 𝒙𝑩‖, 𝒙 ∈ 𝛺

−
.  

In the problems of numerical modeling of liquid and gas flows 𝜙𝜕Ω , it is usually used to re-
construct the boundaries of obstacles moving in the flow on the elements of the computation-
al grid [2] and adapt the grid to the current position 𝜕𝛺. In the latter case, the unit gradient 
vector becomes an additional adaptation criterion 𝛻𝜙𝜕Ω. The values 𝜙𝜕Ω can also be the coef-
ficients of the equations of the mathematical model [f.e., 3]. The visualization of the results of 
computational experiments here includes the display of the body surface moving along the 
calculated trajectory. 
In terms of requirements for the accuracy of the determination 𝜙𝜕Ω, the area of numerical 
modeling is conventionally divided into three zones (fig. 2). The minimum error should be 
ensured near the body surface, where it affects the accuracy of reconstruction 𝜕𝛺 (zone A) 
and is equivalent to the error in determining the coefficients of the equations of the mathe-
matical model (zone B). In zone C, the values 𝜙𝜕Ω and components of the vector 𝛻𝜙𝜕Ω are 
used only as criteria for grid adaptation, which makes it possible to increase the level of ac-
ceptable computational error. 
 

 
Fig. 2. Allocation of zones in the area of solving the problem. 

 
Methods [4-6] based on the numerical solution of the transfer equation are usually used to 
simulate field changes 𝜙𝜕Ω during displacement 𝛺 

𝜕𝜙𝜕Ω

𝜕𝑡
+ 𝒖𝛻𝜙𝜕Ω = 0. (1) 

The body's trajectory is set by the instantaneous velocity. 𝒖(𝒙, 𝑡). The approach is relatively 
easy to generalize to the case of deformation 𝜕𝛺, but has a number of significant drawbacks 
from the point of view of modeling the motion of solid bodies. So, even with numerical inte-
gration (1) using high-precision methods, the accumulation of errors leads to a gradual dis-
tortion of the boundary. An additional obstacle for the practical application of software im-
plementations of the corresponding algorithms can be their high resource intensity. In addi-
tion, the values of the required function are determined at the nodes or centers of the cells of 
the computational meshes. Therefore, the search 𝜙𝜕Ω(𝒙) at an arbitrary point is associated 
with interpolation, which leads to a loss of precision. 
Theoretically, analytical algorithms should provide the maximum calculation speed 𝜙𝜕Ω with 
a minimum error. However, for bodies whose surface consists of many curved faces, the deri-
vation of an explicit functional relationship between distance and coordinate is a serious 
problem. In this case, a discrete body model is considered. The surface 𝜕𝛺 is approximated by 
a set of polygons. The time it takes to calculate the distance to a discrete model depends on its 
dimension (the total number of polygons) and the efficiency of the data ordering method 
used. 



In computer graphics, the signed distance function is considered as an implicit representation 
of solid and deformable surfaces in algorithms for constructing voxel and polygonal object 
models [7], as well as in algorithms for generating images using the ray tracing method [8]. In 
this case, the function field is set on regular or adaptive grids, where exact values 𝜙𝜕Ω are 
stored at the vertices, and approximate values at arbitrary points are calculated by interpola-
tion over cells [9-11]. This algorithm is characterized by a time-fixed error and high perfor-
mance, but in its pure form it is not applicable in the calculations of physical processes. The 
maximum error in determining the signed distance in zones A and B is equal to several per-
cent of the step of the computational mesh. Therefore, the number of cells and the amount of 
data describing the structure of the interpolation grid can go beyond the limitations of  the 
size of the geometry representation. 
In this paper, a combined approach to computation of 𝜙𝜕Ωis presented, which combines in-
terpolation and finding the distance to a discrete surface model. The fundamental possibility 
of its use in numerical calculations is shown in [12] by the example of modeling two-
dimensional flows. Details of the implementation of the combined approach in  three-
dimensional case are discussed below. A description of an algorithm for generating adaptive 
interpolation grids and an algorithm for calculating the signed distance to triangulation is 
given. Examples and parameters of grids for initialization of the signed distance field in prob-
lems of visualization of surfaces and modeling of gas-dynamic flow around solids are present-
ed. 

2. Signed distance to triangulation 
Spatial triangulation is one of the main approaches for body boundaries discretization. The 
surface 𝜕𝛺is approximated by triangulation 𝑇, which consists of 𝑁𝑇oriented triangles: 

𝜕𝛺 = 𝑇 = ⋃ 𝑇𝑖
𝑁𝑇
𝑖=1 .  

Triangle orientation condition means compliance with the order of listing  its vertices (e.g., 
counterclockwise from the side 𝛺+) that can uniquely determine the direction of the unit 
outward normal 𝒏𝑇𝑖to the plane of the triangle. In turn, at any point 𝒄 ∈ 𝑇, the vector of the 

angle-weighted unit pseudonormal can be found 

𝑵𝒄 =
∑ 𝛼𝑖𝒏𝑇𝑖𝒄∈𝑇𝑖

‖∑ 𝛼𝑖𝒏𝑇𝑖𝒄∈𝑇𝑖
‖
.  

The direction of the pseudo-normal is calculated as the sum of the incident normals with re-
spect to the triangles 𝒄, taken with angle coefficients [13]. For 𝒄, located strictly inside the tri-
angle (fig. 4a), the coefficient takes on a value 2𝜋, and the pseudonormal coincides with the 
normal to the plane of the triangle. The angle coefficient at the points located on the edges of 
the triangulation are equal 𝜋 (fig. 4b). In this case, 𝑵𝒄 is codirectional with the vector of the 
sum of the normals of two triangles adjoining along the edge. If 𝒄 coincides with the triangu-
lation vertex (fig. 4c), then the coefficients are equal to the angles at the vertex. 
 

   

a) point inside the triangle b) point on the edge 
c) the vertex of the triangula-

tion 



Fig. 3. Determination of angle coefficients. 
 
The signed distance from point 𝒙 to triangulation 𝑇 is calculated by the formula 

𝜙𝑇(𝒙) = ‖𝒙 − 𝒄‖𝑠𝑖𝑔𝑛((𝒙 − 𝒄) ∙ 𝑵𝒄),  

where 𝒄 is the point closest to 𝒙 on the triangulation surface. The direction of the gradient 
vector is given as 

𝛻𝜙𝑇(𝒙) = {

𝑵𝒄, 𝜙𝑇(𝒙) = 0
𝒙−𝒄

‖𝒙−𝒄‖
, 𝜙𝑇(𝒙) > 0

𝒄−𝒙

‖𝒄−𝒙‖
, 𝜙𝑇(𝒙) < 0

.  

The basic algorithm for determining 𝜙𝑇(𝒙) involves finding the minimum in absolute value in 
the process of sequentially calculating the distances 𝜙𝑇𝑖(𝒙) to each of the triangles. In  opti-

mized algorithms, exhaustive search of triangles is eliminated by preliminary sorting the data 
according to the geometric principle. Ordering allows you to constrain the traversal to the tri-
angles in the nearest neighborhood 𝒙. 
Sorting objects based on k-d trees [14], which are a kind of binary search tree, is efficient for 
problems of finding the minimum distances in space. The principle of constructing a k-d tree 
consists of  a recursive bisection of the solution space by planes perpendicular to the coordi-
nate axes. The triangulation 𝑇 is immersed in a box whose edges are parallel to the coordinate 
axes. The bounding boxes is taken as the construction area of the k-d tree and becomes its 
root. The orientation and position of the partition planes of the tree nodes are chosen so that 
the descendants appearing as a result of decomposition contain an equal number of triangu-
lation vertices. Recursive bisection of nodes continues until the specified number of vertices 
is reached or is interrupted by the constraint on the maximum tree depth. At the end of the 
procedure, lists of triangles belonging to them are made for the leaves. A triangle refers to a 
tree node when it is partially or completely inside the box associated with that node. Triangu-
lation elements intersecting with the faces of boxes of several nodes are included in the lists 
of each of them. Fig. 4 shows an example of uniform triangulation of the surface of  ballistic 
model HB-2 (fig. 4a) and the partition of its triangles at the level of the leaf nodes of the k-d 
tree (fig. 4b). The geometric model of the body is taken from [15]. The triangles at the inter-
section with the borders of the leaves of the tree are filled in black in fig. 4b. 
 

  
a) surface triangulation b) triangulation decomposition 

Fig. 4. Ballistic model HB-2. 
 
The search procedure 𝜙𝑇(𝒙) implements descent along a k-d tree by recursively calling the 
node processing function [16]. The order and necessity of traversing the parent's child nodes 
are set depending on the current status of the problem solution. Leaf node processing con-
sists of sequential calculation of the distances 𝜙𝑇𝑖(𝒙) to the triangles associated with it. The 

starting goal of the search is to determine the tree closest to the leaf 𝒙. The minimum in abso-
lute value of the signed distances to its triangles becomes the radius of the local search area 
centered on the  point 𝒙. Further, when descending the tree, only those branches and leaves 
that intersect with the local search area are considered. If the distance between the point and 



the next processed triangle is less than the radius of the area, then its size is correspondingly 
reduced. It should be noted that, in the general case, the box associated with the node k-d of 
the tree coincides with the minimum bounding box of the set of triangles belonging to the 
node only at the root of the tree. The bounding boxes of triangles intersect due to the pres-
ence of common elements, but, as a rule, they have a smaller volume (fig. 5). Therefore, from 
the standpoint of reducing calculations more efficient is the intersection checking unit and 
the local region search using triangles bounding boxes. 
 

  
a) boxes obtained as a result of recursive 

bisection of the tree root 
b) bounding boxes of triangles belonging 

to the nodes 
Fig. 5. Variants of geometry of the boxes associated with the leaves of the k-d tree. 

 
If we assume that the resource intensity of the determination procedure 𝜙𝑇(𝒙) is proportional 
to the number of processed triangles 𝑁𝑐ℎ𝑒𝑐𝑘, then the acceleration from using a binary search 
tree can be estimated by the value of the coefficient 𝑆𝑘𝑑 = 𝑁𝑇 𝑁𝑐ℎ𝑒𝑐𝑘⁄ . The number of triangles 
𝑁𝑐ℎ𝑒𝑐𝑘 depends on several factors: the shape of the triangulated surface, the method of de-
composition of the nodes of the k-d tree, and the specific location of the point 𝒙 in relation to 
𝑇. The minimum amount of computation in the search for 𝜙𝑇(𝒙) corresponds to the variant of 
descending the tree with testing triangles only containing the point 𝒙 leaf node. The probabil-
ity of the location of a point and the nearest triangle inside one leaf increases for 𝒙 located 
near 𝑇. Therefore, it can be assumed that in the vicinity of triangulation, that is, in areas 
where high accuracy of calculation 𝜙𝜕Ω is important, the acceleration coefficient 𝑆𝑘𝑑 will also 
increase. 
 

  
a) function field 𝜙𝑻 b) distribution 𝑆𝑘𝑑 

Fig. 6. Distance to the surface of the ballistic model HB-2. 
 
Fig. 6 shows the distribution of  values of the function 𝜙𝑇  and the acceleration coefficient 𝑆𝑘𝑑 
on the outer side of the surface of the ballistic model HB-2. In this case, there is no unambig-
uous relationship between the value of the coefficient and the distance to the surface. Howev-
er, in the illustrations, you can see that the value 𝑆𝑘𝑑 decreases as you move from the bounda-
ry along the rays, the origin at points 𝒄 ∈ 𝑇 and the direction coincides with the vector 𝑵𝒄. 



3. Combined signed distance algorithm 
The combined algorithm implements an accelerated procedure for determining the approxi-
mate values of the signed distance function with a controlled loss of accuracy. The solution 
area is filled with an adaptive mesh 𝐺 consisting of cubic cells. The grid nodes store the values 
of the signed distance function to the triangulation 𝜙𝑇  and the components of the gradient 
vector 𝛻𝜙𝑇. The grid cells are divided into two types: interpolation (subdomain 𝐺𝐼) and model 
(subdomain 𝐺𝑇). 
 

  
a) general view b) grid structure in the middle section 

Fig. 7. An example of constructing a grid for a bullet. 
 
Fig. 7 shows an example of an adaptive grid for computation with respect to the axisymmetric 
surface of the bullet. The body boundary consists of cylindrical and conical surfaces with a 
diameter of 8 to 15.5 mm. Bullet length - 34 mm.  Red color in fig. 7b shows a subdomain of 
model cells. 
The way to calculate the values of the required function at a point 𝒙 depends on the type of a 
cell: 

𝜙𝐺(𝒙) = {
𝑃(𝒙), 𝒙 ∈ 𝐺𝐼
𝜙𝑇(𝒙), 𝒙 ∈ 𝐺𝑇

. 
 

Within the interpolation cell, the signed distance function is replaced by a polynomial 
𝑃(𝒙) = 𝐶0𝑥𝑦𝑧 + 𝐶1𝑥𝑦 + 𝐶2𝑥𝑧 + 𝐶3𝑦𝑧 + 𝐶4𝑥 + 𝐶5𝑦 + 𝐶6𝑧 + 𝐶7.  

Coefficients 𝐶𝑘=0,1…7are determined from the values 𝜙𝑇(𝒙) at the cell nodes (trilinear interpo-

lation). A similar interpolation approach is used to reconstruct the gradient vector compo-
nents. Inside the model cells, the signed distance to the surface triangulation is explicitly cal-
culated. 
The generation mechanism 𝐺 consists in hierarchical isotropic refinement of cubic grid cells 
(step ℎ0). That is, the grid has an octree topology with two types of leaf cells. The structure 𝐺is 
limited to the maximum grinding depth at the level 𝑙𝑑 (cell edge ℎ𝑙𝑑 = ℎ0 2𝑙𝑑⁄ ). Decomposition 

of cells in the process of constructing the grid extends to compliance with predetermined in-
terpolation error conditions 

|𝜙𝐺(𝒙) − 𝜙𝑇(𝒙)| ≤ 𝑅𝜙(𝜙𝑇(𝒙)). (2) 

The function 𝑅𝜙(𝜙𝑇(𝒙)) > 0 describes the relationship between the acceptable computational 

error and the signed distance to triangulation. A level cell 𝑙𝑑 that does not satisfy condition 
(2) belongs to a subdomain 𝐺𝑇. In addition, tree branches become model cells if, after their 
recursive splitting  to the level 𝑙𝑑, no descendant of the interpolation type appears. 
The estimation of the interpolation accuracy is realized by comparing the values 𝜙𝐺  and 𝜙𝑇  at 
the nodes of the control grid (step ℎ𝑡 = ℎ0 2𝑙𝑡⁄ , 𝑙𝑡 > 𝑙𝑑). Thus, checking the fulfillment of con-
dition (2) in the level 𝑙𝑚 of cell includes comparing the exact and approximate values of the 
function at (2𝑙𝑡−𝑙𝑚 + 1)3 − 8 points. The set of points of the control grid can be supplemented 
with a list of coordinates of the vertices located on the surface and in the immediate vicinity 
of the triangulation. 



An interpolation grid is generated in a body-related coordinate system. The choice of its 
origin and directions of the axes takes into account the shape of the body. For example, for an 
aircraft, the origin of the associated coordinate system is placed at the center of mass, and the 
longitudinal, vertical, and lateral axes are determined by the aircraft design. The current posi-
tion of the body is set by the coordinates of the center and the directions of the axes of the as-
sociated coordinate system in the coordinate system of the computational domain (fig. 8). 
 

 
Fig. 8. Positioning the body in the computational domain. 

The axes of the linked coordinate system are displayed in blue, and the axes of the com-
putational domain coordinate system are displayed in black. 

 
Finding a signed distance to the surface of a moving object involves transforming coordi-
nates, calculating a distance, and reverse rotation of the gradient vector. Geometrically, the 
situation can be interpreted so that 𝛺 moves along the computational domain together with 
𝐺. 
From the point of view of performance, the bottleneck of the combined algorithm is the local 
transition from interpolation to explicit search 𝜙𝑇  within the subdomain of model cells. An 
indirect criterion for assessing the size 𝐺𝑇 and efficiency of using the combined grid can be 
the ratio of the volume of the subdomain to the triangulation area 

ℎ𝐺𝑇 = 𝑉𝐺𝑇 𝑆𝑇⁄ .  

Assuming that the model type cells are grouped near the surface of the body, the coefficient 
ℎ𝐺𝑇  should correspond to the thickness of the transition zone to work with triangulation. The 

actual volume 𝑉𝐺𝑇 and distribution pattern of the model cells depend on the shape of the sur-

face under consideration, the triangulation step, orientation 𝜕𝛺 relative to the edges 𝐺, the 
basic step ℎ0, the refinement depth 𝑙𝑑, and the type of function 𝑅𝜙. With an increase in the 

decomposition depth, the volumes of prisms obtained by stretching the surface triangles 
along the perpendiculars to their planes are gradually excluded from 𝐺𝑇. Model cells are 
grouped mainly at the vertices and edges of 𝑇, as well as near the bisector planes of acute di-
hedral angles (fig. 9). 

  

a) general view 
b) the pattern of the distribution of cells 

near the vertex 
Figure: 9. An example of the distribution of model grid cells for calculation 𝜙𝑇  relative 

to the box faces. 



Minimization 𝑉𝐺𝑇 due to cell refinement leads to an undesirable increase in dimension 𝐺, that 

is, the total number of cells in the grid. This problem is partially solved by using multiple 
grids to calculate approximate values 𝜙𝐺. Generation of a separate grid 𝐺𝑖 in the vicinity of 
each of the surface features makes it possible to locally maximize the step ℎ𝑙𝑑. For a set of 

nested grids, the order of their initialization and traversal is specified. Subdomains of inter-
section with previously constructed grids are excluded from the generation region of each 
subsequent grid. The cells in them are assigned a model type without testing the interpolation 
accuracy. A similar order of walking is observed when searching for a distance to the surface. 
Fig. 10 illustrates an example of the layout of a quad of nested grids for determining distance 
relative to the surface of an aircraft. Grids 𝐺1and 𝐺2 with high-density cells surround the en-
gines. The grid 𝐺3 contains the object and its immediate vicinity. The last grid 𝐺4 with the 
maximum cell size is used to interpolate the distance in the far-field region. 
 

 
Fig. 10. An example of the layout of a set of nested grids. 

4. Computational experiment 
The combined approach to calculating the signed distance field is implemented as a library of 
subroutines for systems with multicore processors (CPUs). The library includes modules for 
constructing a k-d tree, calculating the signed distance to triangulation, a module for generat-
ing and visualizing interpolation grids, as well as directly implementing the combined algo-
rithm. The procedure for determining the approximate values of the signed distance function 
works with its own data structures, the initialization of which is carried out in a preliminary 
stage. Thus, the software implementation of the combined algorithm without any modifica-
tions is added to the codes of both sequential and parallel programs for the numerical simula-
tion of physical processes and data visualization. In MPI applications, all processes of the 
group read the topology of the interpolation grid and the description of the triangulation, af-
ter which the problem is solved in a sequential mode. To parallelize a loop on a multicore ar-
chitecture with a search for distances to the surface at a given set of points, it is enough to add 
the corresponding OpenMP directive to the program code. 
Below is a description of two examples of generating interpolation grids. The first grid is built 
around a simplified cruise missile model to determine the signed distance function field in 
numerical calculations. The second grid contains a sphere of unit diameter and is used to 
render the surface on the elements of the mixed mesh. 
The appearance of the cruise missile model is shown in fig. 11. 



  
a) front view b) rear view 

Fig. 11. Surface model. 
 
The geometric parameters of the object and surface triangulation are given in tab. 1. 
 
Table 1 

Parameter Value 
Number of vertices 160322 
Number of triangles 322154 

Bounding box 10 x 5 x 2 
Triangulation step 0.00553 

Surface area 44.3162 
 
The area of construction of the interpolation grid is an enclosing box of the model with the 
edges increased by the diameter of the rocket body (D ≈ 1). The piecewise function of the 
admissible interpolation error is: 

𝑅𝜙(𝜙𝑇(𝒙)) =

{
 

 
0.075 ∙ |𝜙𝑇(𝒙)|, 𝜙𝑇(𝒙) < −2.5𝛿

10−12 + 0.005 ∙ |𝜙𝑇(𝒙)|,−2.5𝛿 ≤ 𝜙𝑇(𝒙) ≤ 2.5𝛿

0.05 ∙ 𝜙𝑇(𝒙), 2.5𝛿 < 𝜙𝑇(𝒙) ≤ 5𝛿

0.1 ∙ 𝜙𝑇(𝒙), 5𝛿 < 𝜙𝑇(𝒙)

. 

 

The coefficient 𝛿 = 8.2207116𝐸 − 02 corresponds to the thickness of the turbulent boundary 
layer on a flat plate at an incident flow velocity 2.5𝑀 and environment parameters at an alti-
tude of 10 km. Other parameters of the grid generation are given in tab. 2. 
 
Table 2 

Parameter Value 
Grid generation area 11 x 6 x 3.2 

Basic step ℎ0 0.2 

Minimum cell edge length ℎ𝑙𝑑 0.0125 (𝑙𝑑 = 4) 

Interpolation accuracy testing step ℎ𝑡 0.00625 (𝑙𝑡 = 5) 
 
A general view of the grid constructed to determine the values of the signed distance function 
is shown in fig. 12. Like the surface model, the grid has a symmetric structure with respect to 
planes 𝑌 = 0 and 𝑍 = 0. Therefore, for clarity, the illustrations show a quarter of it against the 
background of the rocket surface. The outer boundaries and structural features of the subdo-
main of interpolation cells are highlighted in green, and the subdomain of model type cells is 
highlighted in red. 



 
Fig.  12. General view of the grid. 

 
In total, the grid contains 5541528 leaf cells, of which 18.5% belong to the subarea of explicit 
calculation of the distance to triangulation. A visualization of the distribution of model cells 
near various parts of the structure is shown in fig. 13. 
The thickness of the zone of the model cells is ℎ𝐺𝑇 = 0.028819 ≈ 0.35𝛿. In this case, the max-

imum distance from the surface to the cell of the model type is 0.206421. The illustrations 
show that the outermost cells are located along the bisector planes of the dihedral angles be-
tween the surfaces of the body and wings. The averaged coefficient of acceleration of the 
search for the distance to triangulation in the centers of mass of the model cells takes on a 
value 𝑆𝑘𝑑 ≈ 414 that is approximately 3 times greater than the average value of the coefficient 
over the entire region of grid generation. 
 

  
a) the nose b) the wing 

  
c) the tail, side view d) the tail, rear view 

Fig. 13. Visualization of the zone of model cells. 



The performance of the software modules and the actual accuracy of interpolation were esti-
mated by the results of determining 𝜙𝐺  at the nodes of a uniform orthogonal grid. The mesh 
is built inside the grid generation region and contains more than 20 ∙ 106 vertices that do not 
match the points of the interpolation accuracy check at the grid generation stage. Average ra-
tio between the actual and the specified calculation error 

𝑑𝑅(𝒙) =
|𝜙𝐺(𝒙) − 𝜙𝑇(𝒙)|

𝑅𝜙(𝜙𝑇(𝒙))
 

 

by the mesh vertices that are inside the interpolation cells is 𝑑𝑅 ≈ 0.0578. That is, the interpo-
lation error does not, on average, exceed 6% of the threshold value. However, grid generation 
with discrete accuracy testing in the general case does not guarantee strict observance of the 
given computational error. In 197 vertices belonging to the |𝜙𝑇(𝒙)| ≤ 0.09 subdomain, the ac-
tual interpolation accuracy is lower than the specified one. The maximum value of 𝑑𝑅(𝒙) =
2.184 is fixed at 𝜙𝑇(𝒙) ≈ 0.00042. The interpolation error here is 1.1% of the absolute value of 
𝜙𝑇  instead of the specified 0.5%. In turn, the maximum error absolute value |𝜙𝐺(𝒙) −
𝜙𝑇(𝒙)| ≈ 5.9 ∙ 10

−4 corresponds to 𝑑𝑅(𝒙) = 1.354 or a deviation of 0.68% from the absolute 
value of 𝜙𝑇. These results are comparable in accuracy with another approaches (for example, 
[6]) to calculating the signed distance function to the boundary of a moving body of complex 
shape. It is also worth noting that we are talking about finding the values of the function at 
arbitrary points in space, and not about modeling the change in the field on some mesh. 
The use of the combined algorithm reduces the computation time by more than 300 times 
compared to the time to find the exact distance to surface triangulation. The body geometry 
description (k-d search tree structure, surface triangulation, and interpolation grid topology) 
takes up 250 MB of disk space. 
The second example demonstrates the possibility of using the combined algorithm in com-
puter graphics. The problem of reconstruction and visualization of the surface of a unit 
sphere on the elements of a mixed mesh is considered (fig. 14). A quasi-uniform mesh with a 
step ℎ𝑚𝑒𝑠ℎ ≈ 0.0625 fills the volume of a cube with an edge length of 1.8 (fig. 14a). It consists 
of 24881 vertices and 77442 elements: 5684 hexahedrons (highlighted in blue in fig. 14b), 
57316 tetrahedrons (highlighted in yellow), 12818 triangular prisms (highlighted in green), 
and 1625 quadrangular pyramids (highlighted in red). 
 

  

a) mesh area and boundary discretization 
b) the structure of the mixed mesh in the 

section 
Fig. 14. Quasi-uniform mixed mesh. 

 
The parameters of the interpolation grid for finding the signed distance relative to the spheri-
cal surface are given in tab. 3. 
 
 
 



Table 3 
Parameter Value 

Grid generation area 2 x 2 x 2 

Basic step ℎ0 0.1 

Minimum cell edge length ℎ𝑙𝑑 0.00625 (𝑙𝑑 = 4) 

Interpolation accuracy testing step ℎ𝑡 0.0015625 (𝑙𝑡 = 6) 
 
The function definition error is limited to 5% of its absolute value: 

𝑅𝜙(𝜙𝜕Ω(𝒙)) = 10
−6 + 0.05 ∙ |𝜙𝜕Ω(𝒙)|.  

The boundary of the object in this case is described analytically 

𝜙𝜕Ω(𝒙) = √𝑥2 + 𝑦2 + 𝑧2 − 0.5.  

That is, the interpolation error is tested against exact values 𝜙𝜕Ω. 
Since the experiment assumes the use of a grid solely for the purpose of visualizing the sur-
face, then all leaf cells of the 𝑙𝑑 level, regardless of the final calculation error, are assigned an 
interpolation type (ℎ𝐺𝑇 = 0). The grid structure in the center slice is shown in fig. 15. 

 

 
Fig. 15. The structure of the interpolation grid in the center slice. 

 
The visualization of the sphere boundaries on the elements of the mixed mesh is performed in 
two ways. The first method is analogous to voxelization. The surface is approximated by the 
outer boundary of the set of mesh elements that are entirely inside the sphere. The second 
method is based on the use of the level set method. The boundary is reconstructed with a po-
lygonal mesh corresponding to the isosurface 𝜙𝜕Ω = 0. 
In order to increase the degree of image detail, the original conformal mesh (𝑀𝐸𝑆𝐻𝐵) is twice 
adapted (meshes 𝑀𝐸𝑆𝐻𝐴1 and 𝑀𝐸𝑆𝐻𝐴2) to the spherical surface (fig. 16). The adaptation 
mechanism consists in hierarchical isotropic refinement of elements with the addition of new 
vertices at the midpoints of the edges, at the centers of quadrangular faces and volumes of 
hexahedra. The adaptation area is formed from cells, the vertices of which are located on op-
posite sides of the sphere surface. 



  
а) 𝑀𝐸𝑆𝐻𝐴1 - single refinement b) 𝑀𝐸𝑆𝐻𝐴2 - two refinement steps 

Fig. 16. Mesh structure after adaptation. 
 
The signed distance field specified at the mesh vertices is initialized by interpolation over the 
cells of the generated mesh. To build a polygonal mesh and visualize the surface, the TecPlot 
toolkit [17] was used. 
The contours of the sphere, obtained as a mapping of the outer boundary of the set of mesh 
cells inside it, are shown in fig. 17. Mesh adaptation improves the accuracy of the surface re-
construction, but even in the general plan, all images are noticeably different from the origi-
nal object. 
 

   
a) 𝑀𝐸𝑆𝐻𝐵 b) 𝑀𝐸𝑆𝐻𝐴1 c) 𝑀𝐸𝑆𝐻𝐴2 

Fig. 17. Visualization of a spherical surface by the boundary of a set of internal mesh 
cells. 

 
The second visualization method with the approximation of the sphere boundaries by a po-
lygonal mesh gives a better result (fig. 18). 
 

   
a) 𝑀𝐸𝑆𝐻𝐵 b) 𝑀𝐸𝑆𝐻𝐴1 c) 𝑀𝐸𝑆𝐻𝐴2 

Fig. 18. Visualization of a surface based on a polygonal mesh. 



Moreover, the difference between the surface reconstruction on different grids is visually 
practically indistinguishable. Numerical estimation (tab. 4) shows that the maximum dis-
tance from the vertices of the reconstructed surface to the actual surface of the sphere de-
creases after each step of the volume mesh adaptation. At the same time, the deviation of the 
polygonal mesh area from the surface area of the displayed object is also reduced. 
 
Table 4 

 𝑀𝐸𝑆𝐻𝐵 𝑀𝐸𝑆𝐻𝐴1 𝑀𝐸𝑆𝐻𝐴2 
Maximum distance 0.003267 0.000978 0.000385 

Square deviation 0.518 % 0.136 % 0.039 % 
 
This example confirms the possibility of using the software implementation of the interpola-
tion approach in problems of visualization of solid surfaces. 

5. Conclusion 
This paper describes a combined algorithm for determining the signed distance to the bound-
aries of moving solid bodies. The accuracy of the presented algorithm does not depend on the 
shape of the body and the parameters of the trajectory of its movement. The combined ap-
proach can be used both in numerical calculations of physical processes and for visualization 
of objects, the geometry of which is specified by the signed distance field. The software im-
plementation of the algorithm is characterized by increased performance and without addi-
tional modifications can be added to the codes of sequential and parallel applications. A fur-
ther direction of work is to implement an interpolation procedure using high-order polyno-
mials. 
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