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Abstract 
Texture classification plays an important role in computer vision and has a wide variety 

of applications. Based on intuitionistic fuzzy set (IFS) theory, this paper proposes a novel fea-
ture descriptor for texture classification by the fusion of motif co-occurrence matrix (MCM) 
and local binary pattern (LBP), namely IFS-MCMLBP. In this way, IFS is used to model 
vagueness or uncertainty, and the MCM method for extracting microtexture information, 
whilst the LBP method plays the role of a global feature. Intensive experiments conducted on 
many texture benchmarks such as CUReT, Outex, Brodatz and VisTex. The results show that 
the IFS-MCMLBP method can be remarkably superior to existing texture classification meth-
ods such as, LBP, GLCM, LTP, LDiP, LDeP and LTrP.  

  
Keywords: Intuitionistic fuzzy set (IFS), texture classification, motif co-occurrence ma-

trix (MCM), local binary pattern (LBP).  
 

1. Introduction 
Texture is a very important attribute in the field of computer vision and image processing. 
Numerous methods of texture analysis have been developed over the years. However, analyz-
ing existing textures in the real world is a major challenge. A good real world texture classifi-
cation method should have a highly discriminative and robust to variances such as rotation 
and scales. Among the many texture classification methods, local binary patterns (LBP) [1] 
and the gray-level co-occurrence matrix (GLCM) [2] are the most popular approaches. Ac-
cording to the research results of [3] [4], LBP is superior to GLCM in texture analysis perfor-
mance. Therefore, there are many LBP-based methods have been proposed to enhance dis-
crimination and improve robustness. Hafiane et al. [5] proposed median binary pattern 
(MBP) that uses the sign of the intensity difference compared to the local median within a 
neighborhood. Tan et al. [6] also proposed local ternary pattern (LTP), which extends original 
LBP to 3-valued codes. Liao et al. [7] employed the dominant local binary patterns (DLBP) to 
extract dominant patterns from textures. Jabid et al. [8] proposed local directional pattern 
(LDiP), which computes edge response values by using Kirsch masks in all eight directions at 
each pixel position and then generates a code, instead of the intensity. In [9], completed local 
binary pattern (CLBP) was proposed by Guo et al. to combine multiple LBP type features for 
texture classification by joint histogram. Zhang et al. [10] proposed local derivative pattern 
(LDeP), which extracts high-order local information by encoding various distinctive spatial 
relationships contained in a given local region. The local tetra pattern (LTrP) utilized first-
order derivative calculations in the vertical and horizontal directions to encode the relation-
ship between reference pixels and their neighbors by Murala et al. [11]. Dubey et al. [12] de-
veloped a local bit plane decoding pattern (LBDP), which is generated by finding a binary pat-
tern using the difference between the intensity value of the center pixel and the local bit-plane 
transformed value of each image pixel. Alaei et al. [13] showed the fast local binary pattern 
(F-LBP) method, which is derived from the vertical & horizontal, and diagonal & off-diagonal 
pixels in a 3×3 patch size, separately. Banerjee et al. [14] proposed a texture descriptor called 
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local neighborhood intensity pattern (LNIP), which considers the relative intensity difference 
between a particular pixel and a central pixel by considering its neighbors and generates a 

sign and a magnitude pattern. In the above mentioned, six indicator texture descriptors — 

namely, LBP, GLCM, LTP, LDiP, LDeP and LTrP — will be compared with the proposed meth-
od IFS-MCMLBP.  
The rest of this paper is organized as follows: in Section 2 briefly introduces LBP, MCM and 
IFS. Section 3 presents the proposed IFS-MCMLBP descriptor including IFS texture genera-
tion, motif, LBP and feature fusion. Section 4 describes similarity measure, classifier and 
cross-validation. Section 5 gives the experimental analysis on various datasets along with the 
other comparative methods. Finally, Section 6 concludes the whole paper. 

2. Related work 

2.1. Local Binary Patterns (LBP) 

Ojala and colleagues [1] first proposed the local binary pattern (LBP) texture operator, which 
is just the first-order circular derivative of patterns and which works with the 3×3 neighbor-
hood. In Fig. 1(a), each pixel is compared with its eight neighbors by taking the difference of 
the center pixel value; resulting strictly negative values are encoded with 0, and other values 
are encoded with 1. LBP is defined as 
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where gi and gc denote the gray values of the neighbor and central pixel, respectively; i is the 
index of the neighbor; P is the number of neighbors; and R is the radius of the circular neigh-
borhood. Fig. 1(b) shows the neighbors for P = 8 when R = 1, P = 16 when R = 2, and P = 24 
when R = 3. Fig. 1(c) shows an example of the LBP operator. For each given pixel, a binary 
number is obtained by concatenating all binary values in a clockwise direction starting with 
the binary value of the pixel’s top-left neighbor. The corresponding decimal value of the gen-
erated binary number is then used for labeling the given pixel. 
 

 
  (a)       (b)    

 

 
(c) 

Fig. 1. (a) Neighbors for LBP pattern, (b) circular symmetric neighbor sets for different P=8 
when R=1, P=16 when R=2 and P=24 when R=3 neighborhoods, (c) an example of the LBP 

operator. 
 



2.2. Motif co-occurrence matrix (MCM) 

Jhanwar and colleagues [15] have proposed the motif co-occurrence matrix (MCM) for con-
tent-based image retrieval. The MCM is derived from the motif-transformed image, which is 
calculated by dividing the whole image into non-overlapping 2×2 pixel patterns. Each grid is 
replaced by a scan motif, as shown in Fig. 2, which minimizes the local gradient while travers-
ing the 2×2 grid that forms the motif-transformed image. These motifs are defined over a 2×2 
grid, each depicting a distinct sequence of pixels starting from the top left corner. 
 

 
Fig. 2. Illustration of scan motifs to traverse a 2×2 grid. 

 
We can derive a transformed image from an original image, as shown in Fig. 3(a). An 8×8 
image, as in Fig. 3(b), shows the corresponding 4×4 transformed image.  
 

 
(a)                                                (b) 

Fig. 3. (a) An 8×8 image (b) Motif transformed image from (a) 
 

3.  Intuitionistic fuzzy set (IFS) 
IFS theory, which is an extension of fuzzy set (FS), enhances images and helps to recover im-
portant structures that are not properly visible [16]. Atanassov [17] pioneered construction of 
IFS, which is defined by three feature functions as the degree of membership, degree of non-
membership, and degree of hesitation or uncertainty. 
Definition: An IFS A in universe X is an expression given by 

 XxxxxA AA  )(),(, 
    (3) 

where ]1,0[:)( XxA , ]1,0[:)( XxA  are the membership and non-membership degree of 
an element x to the set A with the condition: 

1)()(0  xx AA     for each Xx     (4) 
 



For each IFS in X, we call )()(1)( xxx AAA    the degree of hesitancy of x to A, 1)(0  xA  

for each Xx . The illustration of these degrees is shown in Fig. 4. 
 

 
Fig. 4. Relationships between membership, non-membership, and hesitation degrees. 

 
IFS is helpful in modeling vagueness or uncertainty, and important applications of IFS have 
been developed in many diverse areas, including medical diagnosis [18], pattern recognition 
[19], image processing [20], and decision making [21]. 
The proposed IFS-MCMLBP descriptor 
Based on intuitionistic fuzzy set (IFS) theory, a novel descriptor IFS-MCMLBP is proposed by 
the fusion of Motif Co-occurrence Matrix (MCM) and Local Binary Pattern (LBP) as shown in 
Fig. 5. The IFS texture is used to model vagueness or uncertainty, and the MCM method for 
extracting microtexture information, whilst the LBP method plays the role of a global feature. 
And detailed information about it will be described in the following subsection. 
 

 
Fig. 5. The framework of the proposed descriptor. 

 

3.1. IFS texture generation 
In the beginning, a RGB (red, green, and blue) image is converted into an HSV (hue, satura-
tion, and value) image. Then, intuitionistic fuzzy image processing of color texture is applied 
to each channel of HSV to generate the image’s membership, non-membership and hesitancy 
components. 
Suppose channel image A of size M×N pixels has L gray levels ranging between 0 and L−1. 
When applying IFS for image processing [22], an image can be considered as an array of 
fuzzy singletons. An intuitionistic fuzzy image is written as 

  10,)(),(),(,  LxxxxxA AAAIFS      (5) 



where x is the pixel value at (i, j) point, i=0, 1,…, N-1,   j=0, 1,…, M-1. 
With the condition 

1)()(0  xx AA       (6) 
then 

)()(1)( xxx AAA       (7) 
where 

]1,0[)( xA : membership degree 
]1,0[)( xA : non-membership degree 
]1,0[)( xA : hesitancy degree 

 

Vlachos [23] represents the membership degree of image by )/()()( minmaxmin xxxxxA   
where xmax and xmin are the maximum and the minimum gray levels of the image. Sugeno’s 

intuitionistic fuzzy generator (IFG) [24] constructs non-membership degree )(xA  as 
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By varying the λ > 0 parameter, different intuitionistic fuzzy set can be obtained. As λ is not a 
fixed value for all images, the optimum value of λ is obtained by maximizing fuzzy entropy 
[25]. Given an examples, the texture image C57 of CURet texture database is used for repre-
senting IFS texture images when λ is 3.6. Fig. 6(a) depicts C57 image along with their corre-
sponding membership μ, non-membership ν, and hesitancy π images. 

3.2. Motif feature 
According to Section 3.1, a color texture image is processed by IFS texture generation, which 
will generate three μ, three ν and three π component images, respectively, for a total of nine. 
Then the nine IFS component images are individually converted into MCM. Next, we com-
pute the histogram of each MCM. The histogram has 6 bins, representing the distribution of 
motif 1 to motif 6. Since motif 0 only represents a homogeneous texture, so motif 0 is not 
considered. Furthermore, the histogram of nine MCMs is concatenated in series to form a 54-
dimensional feature vector of motif as shown Fig. 6(b). In brief, the motifs’ histograms can be 
easily implemented and computed from that image, and the histogram’s shape provides many 
clues to the image’s microtexture features. 

3.3. LBP feature 
As shown in Fig. 6(c), a 256-bin histogram of LBP is extracted out of the IFS texture images 
including three μ, three ν, and three π images one by one. Then, all the histograms are con-
catenated into a one 2304-dimensional feature vector for representing the global information 
of the texture image. This also makes this global feature more robustness for changes in rota-
tion and scale. 

3.4. Feature fusion 
Since different features may be represented by different importance, it is possible to give an 
appropriate weight by experimental approaches when combining them. However, some stud-
ies have also pointed out that traditional feature fusion methods that simply concatenate sev-
eral features may be better or more robust than using a single feature. 



The aforementioned motif feature and LBP feature represent local texture information and 
global texture information, respectively. This paper uses traditional feature fusion methods to 
simply concatenate together as shown Fig. 6(d). 
 

 
Fig. 6. (a) Texture image C57 from the CURet texture database and showing IFS texture im-
ages including membership μ, non-membership ν, and hesitancy images. (b) Concatenate 

three μ, three ν, and three π motif histograms to form a 54-dimensional feature vector of mo-
tif. (c) Like (b), forming a 2304-dimensional feature vector of LBP. (d) Fusion local feature 

motif and global feature LBP. 
 

4. Classification 

4.1. Similarity measure 
Many measures have been proposed for discriminating the dissimilarity between two histo-
grams, such as Manhattan, Euclidean, d1, Canberra, and χ2 (Chi-square) distance. In this pa-
per, the χ2 distance function is chosen in the experiments due to its excellent performance in 
terms of good recognition rates which is calculated as  
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where Q={qi} and T={ti} (i=1…n) are two histograms with n bins, and the histogram is used as 
feature representation; qi is ith bin (i.e. ith feature) of testing image Q,  ti is ith bin of training 
image T in database. 

4.2. Classifier and cross-validation 

The k-nearest neighbor (k-NN) classification [26] is one of the simplest but widely using pat-
tern recognition algorithm. An object is classified by the distance from its neighbors, with the 
object being assigned to the class most common amongst its k nearest neighbors. This paper 
use 1-NN approach as a classifier in this work, i.e. the texture image is classified to the class of 
its nearest neighbor. 



The sample data was split into training and test sets using the leave-one-out cross-validation 
(LOOCV) [27], for N samples, a total of N trials are conducted. In each trial a sample is taken 
out from the data set and kept for testing and the others are used for training. This procedure 
was repeated for all samples and the accuracy rate obtained as the percentage of classified 
samples out of the total number of samples. This methodology is superior to random parti-
tioning of data to generate training and test sets as the resultant performance of the system 
may not reflect its true ability for texture classification. 

5. Experiments and results 
In this study, the proposed method compares performance with other well-known or state-of-
the-art approaches, namely LBP8,1, LBP16,2, GLCM, LTP, LDiP, LDeP and LTrP. Experiments 
performed on four benchmark of texture images, the Colored Brodatz Texture (CBT) data-
base, the Columbia-Utrecht Reflection and Texture (CUReT) database, the Outex database, 
the Vision Texture (VisTex) database in MIT university. All the experiments are run in Matlab 
environment. 

5.1. Experiments on texture database 
The CBT database consists of 112 periodic or non-periodic 640×640 texture images, parts of 
which are shown in Fig. 7(a). Each texture image is divided into 25 non-overlapping sub-
images for experiments, resulting in 112 categories, each category contains 25 images, and 
11,200 total samples for size of 128×128 pixels. 
The CUReT texture image database contains 61 texture of real-world surfaces as shown in Fig. 
7(b), 205 images per class, acquired at different viewpoints, illuminations, and orientations. 
There are 103 images shot from a viewing angle of 22.5 and 45 degrees, in total 6,283 
(=61×103) images are selected. The size of each texture is 640×480 which is divided into nine 
128×128 non-overlapping sub-images, and then a database of 56,547 samples is obtained. 
This paper use a commonly test suite Outex_TC_00013 (TC13) of Outex database as shown 
in Fig. 7(c), containing 68 classes with 20 texture images per class, in total 1,360 (=68×20) 
images. Each texture class is collected under ”inca” illuminations with resolution of images at 
128×128. 
The VisTex database includes 40 classes texture images, parts of which are shown in Fig. 7(d). 
The size of each texture is 512×512 which is divided into sixteen 128×128 non-overlapping 
sub-images, and then a database of 640 samples is obtained. 
 

 
Fig. 7. Sample textures from the (a) CBT, (b) CURet, (c) Outex, and (d) VisTex database. 

 



5.2. Comparative analysis of the accuracy 

This paper employed the nearest neighbor (1-NN) classification and χ2 (chi-square) distance, 
while the accuracy estimate uses leave-one-out cross-validation (LOOCV). Experiments were 
performed on aforementioned four texture datasets and compared to seven prior art LBP8,1, 
LBP16,2, GLCM, LTP, LDiP, LDeP and LTrP. Fig. 8 illustrates the accuracy rates of all these 
descriptors and following are noted.  
(1) Clearly, it is evident that the proposed IFS-MCMLBP descriptor provide better classifica-

tion performance (average accuracy of 96.08%) compared to other state-of-the-art de-
scriptors. However, for the VisTex database, the proposed descriptor shows a classifica-
tion accuracy of 98.44%, which is the same as the LDeP descriptor but less than the LTrP 
descriptor. 

(2) The accuracy rate of all other descriptors are less than 85% on the Outex(TC13) texture. 
However, the IFS-MCMLBP has achieved a classification rate around 87%. 

(3) GLCM performance is very low on four texture databases when compared to other de-
scriptors. 

 

 
Fig. 8. Classification accuracy (%) on CBT, CUReT, Outex(TC13), and VisTex databases using 

different descriptors. 
 

5.3. Comparative analysis of robust rotation 
For the analysis of rotation robustness, all 112 texture images are rotated by 19 different an-
gles (i.e., 0°, 10°, 20°, … , 180°) from the CBT database. Here we use the nearest neighbor in-
terpolation method for rotation of image. Each rotated image is divided into four non-
overlapping 320×320 sub-images. Four 128×128 sub-images are then cropped from the cen-
ter of the 320×320 sub-images. Hence, we obtain a rotation test set with a total of 8,512 
(=112×19×4) sub-images. Fig. 9 shows an example of different rotation angles from 0 to 180 
degrees using 10-degree steps. 
 

LBP 8,1 LBP 16,2 GLCM LTP LDiP LDeP LTrP
IFS-

MCMLBP

Outex(TC13) 83.89 84.34 48.82 80.29 74.78 82.13 82.87 87.79

VisTex 98.28 98.13 66.72 94.38 95.47 98.44 99.22 98.44

CUReT 95.63 93.08 52.82 97.09 93.62 92.53 94.72 98.18

CBT 96.86 96.25 72.21 97.71 96.25 96.68 97.18 99.89

Average 93.67 92.95 60.14 92.37 90.03 92.45 93.50 96.08
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Fig. 9. Rotation angles from 0° to 180° using 10-degree steps for  

image D01 from the CBT database. 
 
The results of classification accuracy with respect to rotation factors for seven tested de-
scriptors (the GLCM classification accuracy is too low, not considered) are shown in Fig. 10 
and Table 1 for clear comparison on CBT database. The proposed descriptor IFS-MCMLBP 
has the highly stable accuracy (average 95.68%) than the other descriptors under at each ro-
tation angle, that confirms the robustness of the proposed descriptor. Thus, the other de-
scriptors only obtain high accuracy at the rotation angles 00, 900 and 1800, where the image 
distortion is minimal. 
 

 
Fig. 10. Texture classification results for seven tested descriptors  

on the rotated CBT database. 
 

Table 1. Average classification rates (%) of different descriptor  
at each rotation angle on CBT database 

Descriptor 
LBP 
8,1 

LBP 
16,2 

LTP LDiP LDeP LTrP 
IFS-
MCMLBP 

Average 52.96 62.03 78.09 49.93 42.30 44.29 95.68 
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5.4. Comparative analysis of robust scale 

For the analysis of scale robustness, all 112 texture images are scaled with scaling factors of 
0.5 to 1.5 with 0.1 intervals (11 scales for each image) from the CBT database. The bicubic in-
terpolation and antialiasing methods are used to scale image. Each scaled image is divided 
into four non-overlapping 320×320 sub-images. Four 128×128 sub-images are then cropped 
from the center of the 320×320 sub-images. Hence, a scaled test set was obtained with 4,928 
(=112×11×4) sub-images. Fig. 11 shows an example in different scale factors: 0.5, 0.6, 0.8, 1.0, 
1.2, 1.3, 1.4 and 1.5. 
 

 
Fig. 11. Example scaled test set for image D66 from the CBT database;  

scale factors are 0.5, 0.6, 0.8, 1.0, 1.2, 1.3, 1.4 and 1.5. 
 
The classification accuracy results, with respect to scale factors for seven tested descriptors, 
are shown in Fig. 12 and Table 2. It is obvious that the proposed descriptor IFS-MCMLBP has 
the most stable accuracy (average 88.73%) of the seven tested descriptors under multi-scale 
factors. Only in the texture image with a scale factor of 1.5, the accuracy of the IFS-MCMLBP 
descriptor is 64.06%, which is slightly lower than 67.63% of the LTP descriptor. Moreover, 
the enlarged texture image could miss texture structures, and the shrinked texture image still 
remains original structures. Therefore, the accuracy of the former is worse than the latter. 
 



 
Fig. 12. Texture classification results for seven tested descriptors on the scaled CBT database. 
 

Table 2. Average classification rates (%) of different descriptor  
under multi-scale factors on CBT database 

Descriptor 
LBP 
8,1 

LBP 
16,2 

LTP LDiP LDeP LTrP 
IFS-
MCMLBP 

Average 55.19 66.88 85.41 66.48 58.24 55.93 88.73 
 

6. Conclusions 
This paper has presented a new method for texture classification by fusing the MCM and LBP 
features based on intuitionistic fuzzy set. The LBP describes local textures, while MCM em-
phasizes global microstructures and uses IFS to recover invisible important structures. As 
shown in the experimental results, the proposed IFS-MCMLBP method has highly stable ac-
curacy and robustness to rotation and scale, and outperforms the existing methods. For the 
future possibility, the color information also can be incorporated by combining color histo-
gram features on hue and saturation channels into the proposed global or local feature repre-
sentation scheme for better performance. In addition, the proposed method can also be ex-
tended to other research fields such as content-based image retrieval (CBIR), object recogni-
tion, remote sensing and medical imaging. 
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