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Abstract 
The work considers the problems of constructing a generalized computational experiment 

in the problems of computational aerodynamics. The construction of a generalized computa-
tional experiment is based on the possibility of carrying out parallel calculations of the same 
problem with different input data in multitasking mode. This allows carrying out parametric 
studies and solving problems of optimization analysis. The results of such an experiment are 
multidimensional arrays, for the study of which visual analytics methods should be used. The 
construction of a generalized experiment allows one to obtain dependences for valuable func-
tionals on the determining parameters of the problem under consideration. The implementa-
tion of a generalized experiment allows one to obtain a solution for a class of problems in the 
ranges under consideration, and not just for one problem. Examples of constructing a gener-
alized computational experiment for various classes of problems of computational aerody-
namics are presented. The article also provides an example of constructing such an experi-
ment for a comparative assessment of the accuracy of numerical methods. This approach is a 
synthesis of parallel computing, multi-dimensional data processing methods and visual anal-
ysis. The application of this approach makes it possible to increase the efficiency of research 
for a number of applied problems of mathematical modeling.  
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1. Introduction 
The physical experiment was the main and often the only source of information on the prob-
lems of gas dynamics long before the advent of the computer age. In practice, the main goal of 
a physical experiment was almost always not to model the physical phenomenon itself, but to 
clarify the circumstances under which it occurs, i.e. obtaining the dependence of the appear-
ance of the phenomenon on the determining parameters of the problem, such as Mach num-
bers, Reynolds numbers, Prandtl numbers, and the geometric parameters of the problem. 
Such large-scale experimental work made it possible to obtain key relationships for the de-
pendence of the gasdynamic functions of interest or the conditions for the appearance of a 
physical effect on the key determining parameters. In fact, the establishment of such physical 
laws for shock waves, separated flows, characteristic configurations of streamlined bodies was 
the main task of fluid and gas mechanics. 
As an example of such a dependence, one can cite the famous formula of G.I. Petrov, repre-
senting the fundamental law on the ultimate pressure drop in the shock, which the turbulent 
boundary layer is able to withstand without detachment from the wall [1]: 

P2 / P1 = 0.713Me + 0.213. 
Here  P2 / P1  is the pressure drop, Me is the Mach number before the separation point, vary-
ing from 1.5 to 4. 
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Another example is the famous Kozlov formula [2], which represents the dependence of sur-
face friction on Mach numbers, Reynolds numbers and the temperature factor: 

𝑐𝑓𝑤 = 0,085𝑅𝑒𝑤
−0,29+0,01lg𝑅𝑒𝑤�̅�𝑤𝑒

0,39�̅�𝑒
0,2. 

Here  𝑐𝑓𝑤, Rew  is the coefficient of surface friction and the Reynolds number calculated with 

reference to the wall temperature, Te is the temperature at the outer boundary of the bounda-
ry layer, and Twe  is the temperature factor. 
The advent of computer technology allowed solving the problems of mathematical modeling 
of currents, which sharply reduced the need for large-scale physical experiments. However, in 
the problems of mathematical modeling, the main tendency of carrying out series of calcula-
tions with the variation of the defining parameters of the problem also remained. The main 
goal was the same – to determine the conditions for the appearance of a physical phenome-
non when the external conditions of the problem are varied. An example of such approach is 
described in article [8], which presents a series of numerical experiments on the flow of a 
backward ledge by a viscous gas flow. As a result of the experiments, a generalized formula is 
obtained that represents the characteristic time of the establishment of the flow as a function 
of the Mach and Reynolds numbers of the external flow. 
Before the advent of parallel computing technologies, such calculations were difficult to im-
plement and they were quite rare. However, they were the prototype of the generalized com-
putational experiment. 
The generalized computational experiment is based on solving direct and inverse problems of 
mathematical modeling. These tasks can be considered in a parametric and optimization set-
ting. Problem solving is carried out using parallel technologies in multitasking mode. Numer-
ical solutions are volumes of multidimensional data. To process and analyze this data, it is 
necessary to apply the methods of Data Analysis and Visual Analytics. The construction of a 
generalized computational experiment makes it possible to obtain a solution not for one, sep-
arately taken problem, but for a whole class of problems. The class of problems is determined 
in the ranges of variation of the defining parameters of the problem, such as characteristic 
numbers (Mach, Reynolds, Strouhal numbers, etc.) and geometric characteristics. In a practi-
cal sense, this makes it possible to reveal hidden dependences of valuable functionals on the 
determining parameters of the problem, similar to the above formulas. This work continues a 
series of works devoted to the development and implementation of a generalized computa-
tional experiment for various classes of computational aerodynamics problems [3-14]. 
Despite the fact that there are very few works devoted to the development of a generalized 
computational experiment, the development of such experiments is gradually taking place in 
many areas. First of all, tools are being developed to implement such experiments in many 
software packages for solving optimization problems. Here we can cite as an example the 
work [15], where algorithms are implemented that allow a generalized computational exper-
iment in such fields as seismic exploration, plasma physics and turbid media optics, solving 
fundamental and applied problems of studying magnetic materials and creating spintronics 
devices, simulation of field development for the oil reservoir that contains kerogen with in-
situ combustion taken into account, simulation of poroelastic medium problems and hydrau-
lic fracture problems. 

2. Prerequisites for the creation of a generalized compu-
tational experiment 

The development of technologies and software tools for constructing a generalized computa-
tional experiment occurs as the modern development of mathematical methods and high-
performance computing tools. Two main reasons should be pointed out as the main factors 
determining the possibility of efficiently constructing a generalized computational experi-
ment. 
The first of these is the emergence of high-performance computing clusters and parallel tech-
nologies. It is generally accepted that parallel technologies provide a) the ability of fast com-



puting and b) the ability to use detailed computational grids. However, parallel technologies 
also provide researchers with another crucial opportunity. This is an opportunity of parallel 
calculation of the same problem with different input data in multitask mode. From the point 
of view of the author, this possibility is not yet fully appreciated. This possibility allows one to 
effectively solve parametric and optimization problems and construct a generalized computa-
tional experiment. 
The second reason is the intensive development of methods and approaches for processing 
and visualization of multidimensional data. The results of a generalized computational exper-
iment in the form of discrete multidimensional arrays need processing and analysis in order 
to obtain hidden interdependencies between the determining factors in the class of problems 
that interest the researcher. 

3. Generalized numerical experiment 
A generalized numerical experiment involves splitting each of the defining parameters of a 
problem within a certain range. A grid decomposition is formed for some multidimensional 
parallelepiped composed of the defining parameters of the considered problem of gas dynam-
ics. For each point of this grid, the problem is calculated in the space of the determining pa-
rameters. According to [5, 9], this can be written as follows.  
Suppose that there is a reliable numerical method for solving two-dimensional and three-
dimensional nonstationary problems of computational gas dynamics. Then we can obtain a 
numerical solution 𝐹(𝑥, 𝑦, 𝑧, 𝑡, 𝐴1, … , 𝐴𝑁) for any point in the space of a computational domain, 
where x, y, z  are the spatial coordinates, t is the time, 𝐴1, … , 𝐴𝑁 are the defining parameters of 
the problem. As defining parameters of the problem, we will keep in mind the characteristic 
numbers describing the properties of the flow under consideration, such as the Mach num-
bers, Reynolds, Prandtl, Strouhal, etc., and the characteristic geometric parameters. Each of 
the characteristic parameters is limited in a certain range 

𝐴𝑖
𝑚𝑖𝑛 ≤ 𝐴𝑖  ≤ 𝐴𝑖

𝑚𝑎𝑥 ,   𝑖 = 1, … , 𝑁. 
We divide each of the parameters 𝐴𝑖 into k-1 parts, so we obtain for each parameter a parti-
tion consisting of k points. The volume of an N-dimensional space formed by a set of defining 
parameters 𝐴𝑖 is filled with a set of  𝑘𝑁 points. 
Denoting the point from the given set, as (𝐴1

∗ , … , 𝐴𝑁
∗ ), we arrive at the fact that for each point 

of the collection it is necessary to obtain a numerical solution of the gas-dynamic problem 
𝐹(, 𝑥, 𝑦, 𝑧, 𝑡, 𝐴1

∗ , … , 𝐴𝑁
∗ ). 

It is easy to see that this will require solving 𝑘𝑁 gasdynamic problems, which is impossible 
without the use of parallel calculations in a multitask mode. In practice, the number N usually 
does not exceed 5, which corresponds to the computing capabilities at the current time. 
It should also be noted that we formulated the classical problem of parametric study. Para-
metric numerical studies allow one to obtain a solution not for one particular mathematical 
modeling problem, but for a class of problems defined in a multidimensional space of defin-
ing parameters. Also, such a formal formulation allows numerical study of optimization anal-
ysis problems, when the inverse problem is solved at each point of the grid partition of the 
multidimensional space of the determining parameters. Both types of similar problems are 
considered in a series of papers [3-14]. 
The only way to effectively carry out a generalized numerical experiment is applying of paral-
lel computations. The problem of the optimal and effective way of parallelization was thor-
oughly discussed in the papers [7, 8]. There were considered parts of the whole algorithm for 
parameter optimization and analysis. For these parts the main criterion of applicability for 
parallelizing is independence of specific numerical method. From this point of view the most 
perspective way for parallelizing is applying the approach of multitask parallelism using the 
principle “one task – one process”. Due to minimal quantity of internal exchanges between 
the processes we are able to create an effective practical tool for generalized numerical exper-
iment. We assume that k processes are provided for parallel computation. The control process 



P0 creates the grid in the multidimensional space of determining parameters, then P0 forms 
tasks and sends the tasks to others processes and to itself also. After task completion P0 col-
lects the results and implements all procedures defined by user, such as data processing and 
transformation. Due to the absence of internal exchanges between the processes the proce-
dure of parallelizing amounts to creation of control interface for tasks distribution and data 
collecting in one multidimensional array. 
There are some effective and easy ways to create such interface for parallel computations. 
These ways use such computational technologies as MPI (Message Passing Interface) [16] and 
DVM technology [17-22].  DVM technology [17-22] was elaborated in Keldysh Institute of 
Applied Mathematics RAS. DVM-system provides unified toolkit to develop parallel programs 
of scientific-technical calculations in C and Fortran. Unified parallel model is built in C and 
Fortran languages on the base of the constructions, that are "transparent" for standard com-
pilers, that allows to have single version of the program for sequential and parallel execution. 
This way of code parallelizing allows one to save a lot of human resources for coding and de-
bugging. For both types of parallel technologies special control interfaces for parameter op-
timization and analysis were designed [7, 8]. 
With the help of the constructed interfaces, a series of calculations were carried out, realizing 
the concept of a generalized numerical experiment for various classes of problems. The re-
sults of the calculations will be shown in the following sections. Both developed interfaces are 
very versatile. They can be applied to almost any software code for solving the CFD problem 
chosen as the base one. 
According to [5-8], as a result of implementing the construction of a generalized numerical 
experiment and performing parallel calculations, we obtain a large data set representing a set 
of numerical solutions F(x, y, z, t, A1, … , AN) for each point (A1

∗ , … , AN
∗ ) of the partition of the 

multidimensional volume of the defining parameters (A1, … , AN) of the problem under con-
sideration. This volume in its original form is rather difficult to use, although its availability 
for further purposes is necessary. In order to get useful information from a calculated multi-
dimensional data array, first of all we need to reduce its dimension. By lowering its dimen-
sion, we are able to apply the methods of visualization and visual analytics [23-26] in order to 
understand the internal structure of the array and to reveal hidden interdependencies be-
tween its defining factors. The revealed dependencies can be further approximated by geo-
metric primitives in order to obtain a generalizing dependence, which will represent the solu-
tion of interest for a class of problems. Examples of the implementation of this approach are 
presented in [5-14]. 
Also, to reduce the dimension of a multidimensional array, methods of mapping into embed-
ded manifolds of smaller dimension are very effective [27-29]. Among them, the most com-
mon method is the principal component method (PCA). The essence of the method consists 
in the transition from the initial coordinate system to the new orthogonal basis in the multi-
dimensional space under consideration, whose axes are oriented along the directions of max-
imum dispersion. The possible scheme of working with an array in this case is the approxima-
tion by primitives of the data array in the space of the first three main components and the 
subsequent transition to the initial space of the determining parameters. 

4. Visualization in generalized numerical experiment 
The results of a generalized computational experiment, constructed as described in the previ-
ous sections, represent a multidimensional amount of data. One of the most effective tools to 
get the most information from this amount of data is a visual presentation. Visualization 
problems arising in a generalized computational experiment are described and systematized 
in dependence on the types of data in [10]. 
As a result of a generalized computational experiment, we obtain a numerical solution of the 
gas-dynamic problem  𝐹(𝑥, 𝑦, 𝑧, 𝑡, 𝐴1

∗ , … , 𝐴𝑁
∗ ) for each point of space at any time and for each 



point of partition of the space of defining parameters  (𝐴1, … , 𝐴𝑁). Here  F  is a vector of gas-
dynamic functions, such as pressure, density, temperature, velocity components. 
According to [10], one can define 3 types of visualization problems. 
A) For each point of the partitioning of the spatial countable domain  (x, y, z) at the moment 
of time  t  we have a whole set of solutions corresponding to each point of the partition of the 
space of defining parameters. From a practical point of view, the usefulness of such data is 
small, but such information can be very useful in assessing the contribution of the determin-
ing parameter 𝐴𝑖  to the total variance at each point of the computational domain and at any 
time moment. Here, for visualization at each point, it is advisable to use a classic spider dia-
gram with normalization to the range of change of the determining parameter. 
B) For each split point of the space of defining parameters (𝐴1

∗ , … , 𝐴𝑁
∗ )  we have a calculated 

flow pattern in the selected region of space (the calculated region). This makes it possible to 
apply the entire rich set of scientific visualization methods and software [30, 31], developed 
earlier for gas dynamics problems. Possible types of informative visual representations in-
clude: 
 - visualization of scalar and vector fields in parallel sections of the computational domain 
and cross-sections; 
- animation of scalar and vector fields in the constructed sections; 
- construction of combined visual representations. 
Such presentations can be created for each fixed point of a partition of the space of defining 
parameters (𝐴1

∗ , … , 𝐴𝑁
∗ ). Here one has a new opportunity to construct the boundaries of 

change of the defining parameters of interest from  𝐴𝑖
𝑚𝑖𝑛  to  𝐴𝑖

𝑚𝑎𝑥  for each 𝐴𝑖. This can be 
useful, for example, in the visualization of separation zones, where it is possible to single out 
the limits of the change in the position of the separation zones, depending on the choice of the 
determining parameter. Such visual presentations for a particular class of problems can be 
created on the basis of already existing methods and algorithms implemented in many soft-
ware systems, such as ParaView [32], VizIt [33], TecPlot [34]. 
C) From a practical point of view, when solving problems of computational gas dynamics, the 
primary interest to the user, as a rule, are valuable functionals calculated using the already 
computed gas-dynamic functions in the computational domain. The role of such a functional 
can be played by the total drag coefficient of a body in the flow or the friction drag coefficient 
for viscous problems. When analyzing the conditions for the emergence and decay of space-
time structures in a flow field, such a functional can be the characteristic time of the struc-
ture's existence. 
According to [10], here we come to the classical tasks of visual analytics [23-28], where the 
goal is to obtain maximum information about the multidimensional data array and hidden 
relationships between its defining parameters. One of the possible approaches presented in 
[9,35,36] is dimension reducing of the studied space of defining parameters to three, the vis-
ual representation of dependence obtained and approximation of this dependence using a set 
of geometric primitives. The purpose of this approach is to represent the dependence in ques-
tion in an analytical form. If successful, this makes it possible to construct the obtained re-
sults of mathematical modeling in the form of a physical law for the class of problems in 
question.  

5. Some examples of generalized numerical experiment 
This section contains the examples of the generalized numerical experiment application to 
some practical problems. It is applied in some variations due to different aims for each class 
of problems. 
The first example of generalized numerical experiment is devoted to the problem of tuning 
the properties of hybrid finite-difference schemes [12]. The paper [12] contains the descrip-
tion of developed program tool Burgers2. This program tool is intended for tuning and opti-
mization of computational properties for hybrid finite-difference schemes applied to Burgers 



equation. One-dimensional model Burgers equation describes propagation of disturbances 
for dissipative medium. The equation has exact solution, so it is widely used for tuning-up of 
computational tools. Described program tool is based on combining of optimization problem 
solution and visual data presentation. Visual presentations of maximal error surface and er-
ror function are implemented as program tool features. Users have possibility of creating hy-
brid finite-difference schemes and analyzing computational properties for chosen grid tem-
plate provided by program tool. Visual presentation of optimization problem solution allows 
finding of suitable weight coefficients for hybrid finite-difference scheme under considera-
tion. The user is able to make simultaneous calculations varying weight coefficients in the 
scheme and viscosity coefficient in Burgers equation. The user can make the calculations 
simultaneously different sets of weight coefficients in accordance with the concept of general-
ized numerical experiment. Figure 1 presents the surface of absolute error for one of the hy-
brid scheme variants. The negative data area indicates where the oscillations occur. 
 

 
Fig. 1. Surface of absolute error for Burgers equation test [12]. 

 
The following example is also devoted to improving the computational properties of finite-
difference schemes. The problem of mathematical modelling of the flow in the far wake be-
hind the body is solved. In the general case, in a rectangular computational domain, a viscous 
compressible heat-conducting gas flow is considered, described by a complete system of time-
dependent Navier-Stokes equations. At the input boundary, the distributions of gas-dynamic 
parameters are given, obtained from calculations of the flow around an axisymmetric body 
and a portion of the track behind it. The main goal of the generalized computational method 
was to thoroughly study the properties of artificial viscosity incorporated in the hybrid differ-
ence scheme. For this purpose, we studied the properties of the weight coefficients of the hy-
brid scheme on the example of the problem of flow in the far wake and determined the limita-
tions for the weight coefficients. In this task, the following defining parameters were varied, 
such as the steps of the grid decomposition in the x and y directions, the weighting coeffi-
cients of the difference scheme, the Reynolds number of the problem. As a result of the gen-
eralized computational experiment, a limit surface was constructed for the dependence of the 
weight coefficient on the other determining parameters of the problem. An example of the 
limiting surface is presented in figure 2. When choosing the value of the weighting factor be-
low the surface, in the numerical solution, non-physical oscillations arise, which can lead to 
the collapse of the solution. Such surfaces are constructed for non-viscous and viscous flow. 
In the case of viscous flow, laminar and turbulent regimes are considered. 



 
Fig. 2. Surface of absolute error for far wake problem. 

 
The next example considers the problem of the evaluation of the accuracy for different nu-
merical methods. The problem of inviscid compressible flow around a cone at zero angle of 
attack is used as a base one. The results obtained with the help of various OpenFOAM solvers 
are compared with the known numerical solution of the problem with the variation of cone 
angle and flow velocity [13]. Cone angle β changes from 10° to 35° in steps of 5°. Mach num-
ber varies from 2 to 7. For comparison, four solvers were selected from the OpenFOAM soft-
ware package: RhoCentralFoam, SonicFoam, RhoPimpleFoam, RhoPimpleFoam. The results 
of such kind of numericsl experiment were presented as errors in the form of an analog of the 
L2 norm for all solvers. Figure 3 illustrates the results in a form of a change in deviation from 
the exact solution for pressure depending on the cone angle and the velocity for the solver 
rhoCentralFoam. Such changes were obtained for all solvers. 
Figure 3 shows a multidimensional dataset for pressure obtained as a result of parametric 
calculations in the space of the first three principal components. Yellow shows the results for 
rhoCentralFoam solver, red for pisoCentralFoam, green for sonicFoam and blue for rhoPim-
pleFoam.  
Figure 3 shows that the errors for rhoCentralFoam and for pisoCentralFoam can be roughly 
approximated by a plane reflecting the dependence of the error on the Mach number and 
cone angle. The results for sonicFoam and especially for rhoPimpleFoam are significantly 
separated from the results for the first two solvers due to their particular numerical charac-
teristics. This methodical research can serve as a basis for selecting the OpenFoam solver for 
calculating the inviscid supersonic flow around the elongated bodies of rotation. The results 
of solvers comparison can also be useful for developers of OpenFoam software content. The 
results obtained made it possible to get a general idea of the calculation errors for all solvers. 
 



 
Fig. 3. Errors for different OpenFOAM solvers in the space of principal components. 

 
The following example also focuses on the comparative evaluation of the accuracy of open-
FOAM solvers. The classical two-dimensional problem of a supersonic inviscid compressible 
flow falling on a flat plate at an angle of attack was considered as a test problem [14]. As a re-
sult, an oblique shock wave is formed before the start of the plate. The simulation results for 
the solvers considered in comparison are compared with the known exact solution. Calcula-
tions for all solvers participating in the comparison were carried out with the same setting of 
the parameters of the incident flow and angle of attack. Special attention was paid to QGD-
Foam solver, which has controlled dissipative properties. For this solver, within the frame-
work of a general comparison, calculations were carried out with a variation of the parameter 
that allows controlling dissipative properties. The results of estimates of deviations from the 
exact solution in various norms for all solvers were obtained. Here, the implementation of a 
generalized computational experiment made it possible to quickly and efficiently obtain a 
comprehensive picture of the deviation of numerical solutions from the exact solution. Fig. 4 
presents the distribution of pressure in the vicinity of the shock wave for different solvers in 
comparison with exact solution. Also, such distributions are presented for the QGDF solver 
when the smoothing parameter is changed. 
 

 
Fig. 4. The distribution of pressure in the vicinity of the shock wave for different solvers in 

comparison with exact solution [14]. 
 



The next example of application of general numerical experiment considers optimization 
problem. The example presents a search for optimal shape of three-dimensional blade as-
sembly intended for power plant [37]. This experiment is based on developed computational 
technology for the computation of power loads on the 3D blade assembly of a power plant in a 
wind flow. The calculation for various combinations of the key geometric parameters of the 
assembly using parallel computations makes it possible to find the optimal shape of the as-
sembly with respect to its power characteristics. A virtual experimental facility for simulating 
the flow around the power plant based on the solution of the Navier–Stokes equations was 
created. Computations aimed at determining the optimal shape of the blade assembly taking 
into account constraints on its design were carried out, and the results were thoroughly ana-
lyzed using the proposed optimization procedure. The solution of the optimization problem is 
based on the parameterization of the design using three key parameters. On the discrete set of 
values of these parameters, the maximums of two objective functions—the magnitude of the 
total aerodynamic force and the magnitude of the rotation torque—determining the lift-to-
drag ratio of the power plant are found. Figure 5 presents the shape of 3D blade assembly and 
pressure distribution on its surface. 
 

 
Fig. 5. Pressure distribution on the surface of 3D blade assembly [37]. 

 
The given examples show the applicability of the presented approach for a wide range of prac-
tical applications; therefore, the construction of a generalized computational experiment can 
be considered as a rather universal and useful approach. 

6. The perspectives of generalized computational exper-
iment 

The above examples show the possibility of constructing a generalized computational experi-
ment for various problems in the field of computational gas dynamics. Parametric studies can 
serve as such an experiment, where the basis is the ability to solve the direct problem of 
mathematical modeling. An example of an optimization analysis problem is given, where the 
generalized computational experiment is based on solving the inverse problem in an optimi-
zation statement. Thus, to create such an experiment is quite realistic for almost any mathe-
matical modeling problem. 
A separate area of application of a generalized computational experiment can be a compara-
tive assessment of the accuracy of numerical methods. Similar attempts are presented in [3, 
11, 38] devoted to the problem of accuracy estimation with the help of the ensemble of solu-



tions. According to [3, 11,38], if a researcher is able to calculate the same problem using sev-
eral numerical methods with different computational properties, in particular, different ap-
proximation orders, then in some cases one can estimate the neighborhood of the approxi-
mate solution containing the exact solution (exact solution enclosure). If an ensemble of nu-
merical solutions can be divided into clusters of “accurate” and “inaccurate” solutions, then 
the error ranking of values can be performed using an a posteriori analysis of the distances 
between the numerical solutions. This can serve as a computational proof of the existence of 
an exact solution in the case of nonlinear problems. This approach can be considered as per-
spective. Nevertheless, it has evident draw-back. For using of this approach one should have a 
set of solvers with different accuracy order. 

7. Conclusions 
The concept of generalized numerical experiment presented in the article has a wide range of 
possible applications. For the problems of computational fluid dynamics such an approach 
makes it possible to obtain a solution not only for one, separately taken, problem, but for a 
whole class of problems defined in a certain range of the complex of determining parameters. 
Practical implementation of the approach becomes possible with the use of parallel calcula-
tions in multitask mode. The results of calculations are multidimensional volumes of data 
that can be processed using data analysis tools and visual analytics. The application of these 
methods reveals hidden interdependencies between the determining parameters of the class 
of problems. Also, these methods allow in many cases to build the dependence of the valuable 
functional on the determining parameters, which makes it possible to further approximate it 
with geometric primitives and present it in an analytical form. The examples presented in the 
article illustrate generalized computational experiments for various types of tasks, such as 
improving the computational properties of difference schemes, finding the optimal body 
shape in a stream, a comparative assessment of the accuracy of algorithms. The approach is a 
synthesis of parallel computing, multi-dimensional data processing methods and visual anal-
ysis. The application of this approach makes it possible to increase the efficiency of research 
for a number of applied problems of mathematical modeling. 
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