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Abstract 
This paper describes an approach to use modern programmable microelectronics and on-

tology engineering to create custom hardware human-machine interfaces for solving particu-
lar visual analytics tasks. The idea of these special interfaces is to involve additional modali-
ties like motor or haptic into the analytics process to improve its quality and speed. We pro-
pose using tangible user interfaces built upon the Internet of Things technologies to present 
the visual analytics system as a cyber-physical one, melting together the real and virtual envi-
ronments. To automate the creation of such an alloy we suggest a unified approach of com-
posing the firmware for the interface hardware device and corresponding drivers for the 
computer; of calibration the device’ sensors; of testing and debugging the communication be-
tween the interface device and the application it is supposed to steer; and of solving visual 
analytics tasks using the device created. All the mentioned steps are supported by the high-
level built-in mechanisms of SciVi visual analytics platform we created during the previous 
research and improved in the current work. Data flow diagrams are used to visually describe 
the data preprocessing and rendering, as well as the ways hardware interface affects them. 
Ontology engineering is used to ensure flexibility and extensibility of the entire platform 
combined with the semantic power of its individual blocks: the behavior of SciVi is fully gov-
erned by underlaying ontologies, which describe supported data formats and types, filters, 
rendering mechanisms, supported electronic components of the hardware interfaces, the 
ways to program them and to communicate with them.  

The proposed methods and means are tested by solving real-world visual analytics task of 
automated identification of the relationship between native speakers’ psychological charac-
teristics and their verbal behavior.  
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1. Introduction 
Technologies of the Internet of Things (IoT) [1] together with the corresponding 
edge [2] and fog [3] computing techniques enable rapid development of so-called 
cyber-physical systems, which are the alloy of the real and the virtual worlds and as-
sume the computation power is incorporated and distributed within real-world eve-
ryday objects [4]. The key paradigm of human-machine interaction within cyber-
physical systems is tangible user interface (TUI), proposed by Hiroshi Ishii in 
1997 [5]. TUI assumes interaction with virtual objects through their physical “ava-
tars” – real-world objects, which are not universal for the entire virtual world (like 
traditional controls, such as mouse or keyboard), but are close in shape, meaning and 
distinctive features to their virtual prototypes. Moreover, these physical objects often 
share some other functions, which are different from steering the virtual objects: 
they can be some real-world tools, pieces of interior, etc. 
The nature of TUI implies multimodal interplay with the human that is far beyond 
traditional pushing of the buttons. First of all, haptic channel is employed as an addi-
tion to traditional audio and visual channels. This is especially important for the vis-
ually impaired people providing them with wide range of possibilities to communi-
cate with the virtual environment. As per the task solved, other modalities can be 
combined with the haptics, for example, spatial gestures. 
In our opinion, the multimodal nature of cyber-physical systems opens up the wide 
opportunities for humans in the field of complex data analytics. TUI for visual ana-
lytics systems enable expert to efficiently utilize his / her perceptive and cognitive 
mechanisms to understanding the features of the analyzed objects and thereby speed 
up the process and increase the quality of analysis. 
Cyber-physical interaction of the human with the visual analytics system can be de-
noted as “preceptive-cognitive interface” (PCI). PCI is an ergonomic multimodal in-
terface customized for the particular analytics task involving the human sensory-
motor sphere and contributing in the speed and quality of analysis. 
The aim of this work is to develop the concept of perceptive-cognitive interface for 
multimodal analytics tasks, as well as to describe the implementation of the appro-
priate software and hardware for confirming in practice the viability of the proposed 
concept. 

2. Perceptive-Cognitive Interface Concept 
The creation of perceptive-cognitive interfaces is based on the characteristics of the 
human psyche, which is capable of processing information transmitted by organs of 
sensory perception and harmonizing these heterogeneous multimodal signals to 
form a holistic picture of the world. Moreover, most of the understood and con-
sciously processed information is transmitted in the process of verbal communica-
tion, which is mainly carried out using natural language through audio or visual 
channels. However, the ability of the psyche to structure information obtained 
through different channels of perception means that the other modes of sensory per-
ception available to human also have great potential for understanding and cogni-
tion. Language semantics is closely related to the sensorimotor sphere of human. 
This is evidenced by research area of neuroscience and cognitive psychology (the so-
called Embodiment Theories – theories involving the consideration of human con-
sciousness in relation to physical environmental factors) [6–8]. The researchers have 
identified patterns between pronouncing words with the food semantics and saliva-
tion [9], reactions of the expansion or contraction of the pupil to words conveying 



darkness and brightness [10], manifestations of motor activity as a reaction to words 
with the meaning of actions [11], etc. In addition, it was found that the words associ-
ated with the activation of the sensorimotor experience consistent with the semantics 
of the word contribute to the understanding of messages, and, on the contrary, the 
words with the semantics of the contrasting (uncoordinated) sensorimotor experi-
ence hinder the understanding of verbal information.  
Words (considered in context), which have several sensorimotor codes, are more eas-
ily recognized [12]. This finds practical application in the learning process [13] and in 
search technologies for multimodal (visual and audio) content [14]. The interconnec-
tion of words of abstract semantics with the sensorimotor sphere is described differ-
ently in the context of Embodiment Theories: either through the theory of conceptual 
metaphor introduced by G. Lakoff [8], or through the idea of a closer connection be-
tween abstract words and the emotional sphere [15]. 
The idea of perceptive-cognitive interfaces is based on Embodiment Theories and 
technological possibilities of using multimodal channels for the transmission of natu-
ral language information. From a technological point of view, this possibility is pro-
vided by a system of sensors used to activate text fragments of a certain sensory (sen-
sorimotor) semantics. To activate, the semantics of sensors must be connected with 
the semantics of language content using a common formal model, which can be an 
ontology that links the levels of possible types of sensors (temperature, sound, light, 
movement in space – motility – and others) with the values of the sensors (color – 
white, black, etc.; moving in space – up, down, right, left, etc.) and the names of se-
mantic fields consisting of the meanings of words/phrases with perceptual seman-
tics. Here, the semantic field is understood as “the totality of linguistic units, com-
bined by a common content and reflecting the conceptual, substantive or functional 
similarity of the designated phenomena” [16]. 
The perceptive-cognitive interface in multimodal analytics systems allows the expert 
to use his / her perceptive-cognitive experience to find the pertinent information. 
The search strategy is based on the general hypothesis, in which proving process 
numerous operational hypotheses are used (for example, “Are there any messages in 
the analyzed data in which <condition>”). Operational hypotheses arise due to the 
knowledge gained about the relationship of individual modal values with each other 
and their regular presence in texts, i.e. their semantic standardization. In this con-
text, the expert’s perceptive-cognitive experience and operational hypotheses become 
part of the human-machine interface. 
The Fig. 1 shows a fragment of the PCI ontological model for spatial movements’ sen-
sors (for a sake of simplicity, only four types of movement are presented: up, down, 
right and left). This ontology is used for ontologically controlled solution of the prob-
lem of determining the type of personality of a native speaker depending on the use 
of words with certain perceptual semantics in the framework of the state research 
project of Perm State University for 2017–2019, project No. 34.1505.2017/4.6 “Ver-
bal and nonverbal behavior of a social network user: socio-cognitive modeling using 
machine learning methods and geoinformation technologies”. 
 



 
Fig. 1. A fragment of perceptive-cognitive interface ontology. 

 
In the above fragment, the categorical semantics (Category) of the verbal messages is 
represented by “Spatial” and “Temporal” sub-categories. Spatiality, in its turn, is rep-
resented by the “Direction” and “Speed” of movement. The direction of movement is 
realized by means of antonymic pairs: “Moving Up” and “Moving Down”, “Moving 
Right” and “Moving Left”. Note that in this case we take into account only the seman-
tics of messages (for example, “he raised his hands above his head”, “look in the low-
er left corner of the screen”, etc.). The semantics implemented in messages is directly 
related to the detectable gestures “Up”, “Down”, “Left” and “Right”, which, in turn, 
can be used to control the process of visual analysis of the messages’ semantics. For 
example, when using PCI gesture “Up”, the content that has the semantics of moving 
up should be filtered (“Moving Up”). 
The instance “Text 1”, is on the one hand a representative of the message class 
(“Text”), and on the other hand belongs to a specific author (“User 1”). “User 1”, in 
turn, is an informant (“Informant”), who has some texts created by him / her and a 
set of parameters (“Parameter”), for example, the psychological parameters of the 
large five – factor personality questionnaire BFI (Big Five Inventory) and its values, 
for example, “bfin” – the severity of neuroticism: character traits predisposing to the 
experience of negative emotions [17]. 
Thus, the ontological model allows using gesture to filter content in accordance with 
the semantics of the gesture used, and then analyze the statistics of the parameters of 
personal characteristics of the authors of texts, in which this semantics is expressed. 
For example, if we want to know what percentage of informants with high rates of 
neuroticism refer in their statements to the semantics of moving up, it is enough for 
us to make a hand gesture “Up” within PCI. 
The presented ontological model is implemented in the information system Semo-
graph. This system is intended to automate the process of text data analyzing, creat-
ing the corpora, conducting and interpreting the results of psycholinguistic, sociolin-
guistic, and the like experiments, to create the classifiers and thesauri of subject are-
as, to construct the models and other tasks that arise during the analysis of text con-
tent [18]. 
 



To solve the problem of connecting gestures with message semantics, in Semograph 
we created a hierarchical classifier, which cells contain semantic fields, and the 
markup procedure is designated as field analysis (see. Fig. 2). The markup of the 
messages with spatial semantics was carried out by two experts. During the classifi-
cation process all experts developed a concerted position on controversial issues. 
 

 
Fig. 2. Screenshot of the field analysis window that classifies user comments. 

 
In the Fig. 2 it can be seen that the field analysis window consists of three areas: 
“Fields”, “Terms” and “Contexts”. The left column of “Fields” shows semantic fields. 
“Terms” (comments of the social network users) are filtered by the UP field (only 
comments that are included in this field are displayed). In the “Contexts” column we 
can see the same comments with their additional parameters, including links to the 
contexts in which they occur. The “Terms” column reflects the frequency of using 
comments in the entire reaction corpus (column “C”) and the number of occurrences 
of this unit in semantic fields (column “F”). 
An important feature of the presented model is the hierarchical organization of se-
mantic fields and their potential extensibility. For example, each field with spatial 
semantics can be divided into three subfields: the first subfield consists of lexical 
units with an explicit expression of sensual semantics, the second subfield is com-
posed of lexical units with an implicit expression of sensual semantics, and the third 
one consists of lexical units associated with this semantics indirectly, for example, 
using metaphorical / metonymic transfers, etymology, etc. This approach allows us, 
on the one hand, to expand significantly the repertoire of lexical units covered by the 
presented model, and on the other hand, to choose the level of semantic complexity 
appropriate for the expert. 
The hardware part of PCI in this case is a glove-style device that detects spatial ges-
tures by using inertial measurement unit (angular position detector) MPU6050 and 
programmable microcontroller ESP8266. Software part of PCI is SciVi visual analyt-
ics platform [19] that interprets the gestures and treats them as semantic filters for 



the data visualized as a graph. This graph demonstrates the relationships between 
the verbal behavior of people and their psychological characteristics revealed using 
machine learning methods [20–22]. 

3. Perceptive-Cognitive Interface within SciVi Visual 
Analytics Platform 
The PCI is distinct from the traditional human-machine interface (like mouse or key-
board) by its specialization: its hardware part is customized to suit the particular vis-
ual analytics task. In this sense it is close to the GUI, which appearance may vary 
from task to task. However, PCI involves changes both in virtual and in physical part 
of the interface. This, in turn, requires high-level tools and high-level hardware and 
software building blocks to enable an expert to assemble a custom PCI without hav-
ing deep skills in programming or electronics. SciVi platform provides corresponding 
mechanisms to automate customizations in the software part of PCI.  
We propose the following life cycle of PCI within SciVi: 
1. Designing the PCI. 
2. Assembling the hardware part of PCI. 
3. Writing and installing the software part of PCI (firmware for the device and driver 

for the computer). 
4. Calibration of the device’ sensors. 
5. Testing and debugging of the communication between PCI and application it is 

supposed to steer. 
6. Solving analytics tasks with PCI. 
Traditionally, each stage of this life cycle is supported by different, often unrelated 
instruments. In this work we propose to utilize SciVi visual analytics platform [19] as 
a unified approach for PCI creation and usage. SciVi includes high-level flexible ad-
aptation and customization mechanisms governed by ontologies. It leverages com-
munication with different data sources to obtain data for analytics, provides mecha-
nisms to declare preprocessing (filtering) and visualization algorithms as well as 
supports device firmware generation. Thanks to this, SciVi can help to fulfill stages 
3–6 in a uniform way making the PCI creation available for experts without ad-
vanced software engineering skills. 
Designing and assembling stages cannot yet be automated, but the electronic com-
ponents ontology of SciVi [19] has, among others, the recommendation function, as it 
contains a description of various microcontrollers, sensors, actuators and commuta-
tors, as well as methods of their interactions. It can be treated as a guideline, which 
components fit together and how they should be interconnected. 
The firmware generation mechanism included with SciVi operates on the basis of the 
electronic components’ ontology indicated above [23]. The logic of the PCI, as well as 
the visualization and analysis algorithms, are declared using a data flow diagram 
(DFD), composed by the user within built-in high-level editor. This altogether allows 
almost complete automation of the PCI software part development.  
Fig. 3 presents the basic concept of SciVi usage as a platform for PCI-powered visual 
analytics. 
 



 
Fig. 3. PCI in SciVi: blue arrows denote the main direction of both data and control 

flows. 
 
Fig. 4 demonstrates the DFD describing firmware for ESP8266 microcontroller used 
in the glove PCI that has been assembled during the current work. 
 

 
Fig. 4. Data flow diagram describing device firmware. 

 
The data sources in this case are the inertial measurement unit (IMU) MPU6050, 
supplying acceleration and angular velocity of the glove and digital pin, connected to 
the button pushed when index finger is bent. The IMU data are passed to Mahony 
filter [24] that transforms them into quaternion describing the glove’s orientation. 
The boolean signal from digital pin is debounced to reduce the random noise inevita-
bly appearing when button is pushed. Then, both orientation quaternion and finger 
bending flag are serialized in JSON format, combined into single message and 
transmitted via WebSocket over the WiFi. 
According to the signal message format (defined by serialization and transmission 
nodes), ontological profile of the device is automatically created. This profile de-
scribes the output data of the device, which should be used as control signals during 
the visual analytics process. The ontological profile enables to generate the node that 
represents the device as a control signal source as it is schematically shown in the 
Fig. 5. 
 



 
Fig. 5. Generation of the device ontological profile. 

 
Calibration of the PCI sensors can be simplified by means of visual monitoring of the 
control signals obtained from the device. SciVi DFD editor provides fast and flexible 
way of choosing the most observable and informative form of data displaying, and 
thereby helps to efficiently estimate the sensor measurement errors [25]. The graph-
ical user interface generator within SciVi allows to incorporate feedback widgets into 
the visualization view. These widgets can be used to set up calibration parameters 
and transfer them back to the device. For example, threshold values can be tuned at 
runtime to compensate the sensor errors and noise [25]. 
The debug of the interaction between PCI and particular graphical scene visualized 
by SciVi is also based on modifying the DFD: the user can try out different combina-
tions of rendering algorithms and semantic filters for the data, searching for the most 
convenient and observable variants. Thereby the one can rapidly examine, if the par-
ticular PCI suites the needs of current visual analytics task, or it has to be improved. 
Ontology driven functioning of SciVi simplifies the extending of the platform’s capa-
bilities: if the new semantic filters or rendering mechanisms are required for the par-
ticular visual analytics task, they can be added without changing the source code of 
the SciVi core. Thereby, SciVi can be tuned for solving the wide range of visualization 
and analytics problems, involving both traditional graphical user interfaces and PCI. 



Fig. 6 demonstrates DFD that describes the mapping of the different gestures to the 
language semantics. The “Glove” node denotes communication with the glove PCI. 
The connection is established automatically; technical details of data transmission 
needed for this connection are described in the ontological profile of the glove device. 
The nodes “Getsure Up”, “Gesture Down”, “Gesture Left” and “Gesture Right” de-
scribe detectors of corresponding gestures. The key DFD element is the node “Classi-
fier” depicting the filter, that actually maps gestures to the language semantics ac-
cording to the ontology, that has been shown in the Fig. 1. Under the hood this filter 
generates ontology driven algorithm for selecting the data, which semantics matches 
the gesture detected, and transmits this algorithm to the graph view represented by 
“BFI Graph” node. The “BFI Graph” node denotes the visualization type of the data 
and the data itself. In this example, for the sake of DFD simplicity, the data set is tied 
to the visual object as a parameter accessible through the node’s settings. The render-
ing result is shown in the Fig. 7. According to the DFD described above, data filtering 
in a circular graph [22] is controlled by the glove PCI. 
 

 
Fig. 6. Data flow diagram describing gesture-based visual analytics task. 

 



 
Fig. 7. Circular graph rendered according to the data flow diagram from the Fig. 6. 

 

4. Conclusion 
Our previous research allowed to transform SciVi scientific visualization system into 
the feature-packed visual analytics platform. In the current work we integrated 
methods and means of ontology engineering with IoT technologies to enrich SciVi 
with hardware perceptive-cognitive human-machine interface. This is a first step to-
wards multimodal analytics systems, involving both visual and sensorimotor percep-
tive channels of the expert. Technique proposed were used to solve a practical prob-
lem of analyzing the dependencies between psychological parameters and verbal be-
havior of social network users. According to the proposed approach a PCI was devel-
oped that enables to control the data search and filtering mechanisms with spatial 
gestures, associated with corresponding spatial semantics. Gestures are detected 
with special glove manipulator that operates on the basis of inertial measurement 
unit. Presented ontology driven classifier maps these gestures to the data selection 
algorithms, which build up a semantic filter for the data being visualized. This, in 
turn, speeds up the analysis process allowing the expert do find the relevant data just 
by the single gesture without any textual queries, sliders dragging, etc. 
In the future, it is planned to expand the range of supported PCI modalities with a 
haptic channel, using various types of sensors and various methods of their integra-
tion into sensor networks based on the principles of IoT technologies. In addition, it 
should be examined how tight the expert’s perceptual and cognitive experience is 
converged with PCI, because in the process of multimodal analytical activity the use 
of this type of interface can qualitatively transform the expert’s perceptual-cognitive 
experience due to the possible formation of additional neural connections between 
visual, auditory, motor, and other centers. These studies will be carried out using the 
capabilities of the 128-channel BE Plus LTM neurovisor. In the future, this can sig-
nificantly improve the methods and means of automated transformation of machine-
to-machine IoT-systems into human-centric ones. 
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