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Abstract 

The paper is devoted to the visualization of functional dependencies expressed as 
    (   ) by building sleek 3D surfaces based on discrete sets of points. The criteria of sleek 
surface quality are formulated taking into account the needs of scientific visualization and 
visual analytics. The most important criterion is the absence of misplaced extremes and oscil-
lations on the result surface, because such artifacts can deliver false information about the 
process being represented by the visualized data. The methods of building smooth surfaces in 
the most popular scientific visualization software are examined against the formulated crite-
ria and it is discovered that the misplaced extremes are an issue in modern visualization 
tools. To tackle this problem the new approach of building sleek surfaces is proposed. This 
approach is based on the previously developed algorithm of building smooth 2D curves that 
was generalized to the three-dimensional case.  

The developed surface building algorithm consists of the following main steps. Assuming 
to have the input data as a regular grid of 3D points, which correspond to the table-defined 
function     (   ), we first propose to build the set of smooth 2D curves along X and Z ax-
es. Afterwards, we propose to build bicubically blended Coons patches for all quads bounded 
by each 4 neighbor points from the original data set. Then we discretize each Coons patch by 
emitting new points to reach needed surface resolution. Next, we triangulate the created set 
of points and calculate vertex normals using smoothing groups algorithm. Last, we smooth 
the field of normals using Gaussian blur function. 

The proposed algorithm meets the formulated criteria and ensures high visual quality of 
result surfaces. It was integrated into multiplatform charting library NChart3D and scientific 
visualization system SciVi, where it proved its correctness and stability by solving real-world 
scientific visualization tasks. 
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1. Introduction 
Almost every multi-purpose scientific visualization and visual analytics tool allows to build 
volumetric surfaces to graphically represent functional dependencies expressed as 
    (   ). When it is about scientific experiments, very often f is a table of discrete values 
obtained during measurements or mathematical modeling. Thereby the sample rate of f is 
limited by the experiment’s circumstances and the result surface may become very rough. 
While the most popular rendering technique nowadays is polygonalization, the visual qual-
ity of corresponding images with low sample rates of f become unacceptable (see Fig. 1a). 
The one has to apply some smoothing interpolation to the set of values to achieve attrac-
tive and observable results. 
One of the most popular ways in computer graphics to create smooth surface according to 
the discrete set of points is to build NURBS [1]. However, this way is often inappropriate 
for visual analytics needs, because NURBS surface does not contain the original point set 
using it as vertices of bounding lattice (as shown in Fig. 1b) and thereby does not really re-
flect the process under analysis.  
The other way is to use smooth (continuously differentiable) interpolation functions like, 
for example, Hermite splines [2]. But this way in turn often gives so-called outliers: mis-
placed extremes on the surface, which do not belong to the original point set (as shown in 
Fig. 1c). Sometimes it is all right to have these outliers for sake of surface smoothness, but 
in some specific situations this can be a critical issue in terms of visual analytics. For ex-
ample, if f is a table of temperature measurements across some area, the Fig. 1c will deliver 
potentially false information about the raise of temperature between two points in top-
right corner. Especially if the samples of f are actually close to each other, the oscillation 
like in Fig. 1c is in fact very improbable and highly unwanted by showing continuously dis-
tributed values. 
 

 
a     b     c 

Fig. 1. Surface (painted blue) constructed by the set of control points (painted red) using 
different approaches: linear interpolation (a), NURBS (b), Hermite splines (c). 

 
This paper addresses the problem of building the sleek-appearing 3D surface with no mis-
placed extremes according to the discrete set of points. While this problem is indeed cru-
cial for solving several tasks of visual analytics, many visualization systems lack the effi-
cient implementation of such kind smoothing. In the previous work [3] 2D case was con-
sidered and the solution for building sleek 2D curves according to the discrete point set 
was proposed. The present work is an improvement and generalization of that approach to 
the 3D case. 



2. Criteria of Sleek Surface Quality 
The surface k-smoothness is normally defined as the ability to be continuously differenti-
ated k times, Ck, k > 0. Alternatively, according to E. Weisstein, a surface parameterized in 

variables u and v is called smooth if the tangent vectors  ⃗  and  ⃗  in the u and v directions 

satisfy  ⃗   ⃗    [4].  
However when it comes to the visualization and, in particular, visual analytics, the most 
important is how the surface is perceived and whether it can deliver proper information to 
the person examining the data. The perception in general is subjective, but it is based on 
the shape and the shading. While mathematically smooth surfaces are perceived sleek, the 
surfaces with derivative discontinuities (so-called C0-surfaces) are not necessary perceived 
creasy. Moreover, if the shape is actually creasy, the proper shading can effectively mask it 
(which is widely used in computer graphics to perform visually attractive presentation of 
low-polygon approximations of 3D models). 
Taking into account the visual analytics needs, the list of quality criteria for the surface 

built by the discrete set of points {   },      ,       is pretty the same as the list of 

quality criteria for curves in [3]: 

1. The surface should be an interpolation of {   }, this means, it should contain {   }. 

2. The surface should be perceived as sleek as possible: there should be no noticeable 
creases, or their number should be minimal. 

3. There should be no misplaced extremes on the surface: minimum and maximum on 

the [         ]  [         ] should be in border points and the surface should not os-

cillate in the defined area. 
4. There should be no self-intersections on the surface if the corresponding linearly in-

terpolated surface has no ones. 

5. The surface should not oscillate in the vertical direction and for each [         ]  

[         ] should not intersect the bounding box with the sides parallel to vertical 

axis and containing                        . 

6. The building algorithm should be as efficient as possible. 
The logic behind these criteria is described in detail in [3] related to the 2D curves and can 
be transferred as is to the 3D case. 

3. Test Point Set 
Smoothing algorithms may spawn misplaced extremes in different combinations of neigh-
bor points, so it is matter of elaborate testing to prove that the particular algorithm gives 
stable results. Table 1 contains the data set used in this paper for demonstration purposes. 
This data set is quite random (the data are generated artificially), but it clearly shows the 
misplaced extremes problem in all the algorithms the developed one is compared to.  
Table 1. Data set used for demonstration purposes 

 x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 

z = 0 1.321 1.657 1.165 1.215 1.623 1.236 1.657 

z = 1 1.265 1.654 1.154 1.165 1.153 1.648 1.654 

z = 2 1.324 1.264 1.547 1.125 1.246 1.465 1.264 

z = 3 1.165 1.654 1.125 1.154 1.315 1.135 1.654 

z = 4 1.157 1.654 1.165 1.300 1.136 1.168 1.654 

z = 5 1.215 1.658 1.184 1.156 1.163 1.185 1.658 

 
 
 



It should be stressed, that while the proposed algorithm has no misplaced extremes on this 
particular data set, it is not at all the proof of its stability, because this data set does not 
cover all possible combinations of points positions. The stability of the proposed method 
was proven by solving the real-world visual analytics tasks, see the Section 6. 

4. Related Work 

4.1. Subdivided Surfaces 

The problem of creating smoothed versions of rough surfaces relates not only to the scien-
tific visualization and visual analytics, but also to other branches of computer graphics and 
computational geometry (including photorealistic rendering, computer-aided design, etc.). 
In polygon-based 3D graphics the smoothing of surfaces is all about subdivision – repre-
senting surfaces with more polygons than the origin point cloud ensures. In terms of 
mathematics, there are generally two types of subdivision: approximation and interpola-
tion.  
Approximation does not necessary contain the original set of points. The basics of approx-
imation are described in details by C.T. Loop [5]. The examples of this approach are 
NURBS surfaces with their different modifications (like T-Splines [6]). Modern 3D 
graphics editors implement similar algorithms, for example, Catmull-Clark subdivision [7] 
used in Blender [8]. But the problem of these methods is always the same: approximated 
surfaces are typically enclosed in the original ones as it is shown in [5] and can be seen in 
Fig. 2. This means, they do not suit the very first criteria mentioned in the Section 2. 
 

 
Fig. 2. Surface built by test point set and subdivided with Catmull-Clark algorithm in 

Blender. 
 

Interpolated surfaces meet the first criterion containing their control points. The interpola-
tion algorithms can widely vary. The most popular are based on the cubic polynomials, like 
cubic Hermite interpolation mentioned above. The variety and variability of interpolation 
approaches gives the ground to create a custom algorithm that could meet all the criteria 
formulated. 

4.2. Monotone Interpolation 

There are several methods of monotone interpolation in 3D space. For example, the works 
by M. Abbas et al. [9] and L. Allemand-Giorgis et al. [10] cover C1-continuous smooth in-
terpolation of gridded data, ensuring absence of misplaced extremes inside the input data 
domain. These methods normally meet all the criteria indicated in the Section 2, but being 
restricted by C1-continuity they are unable to handle corner-cases like very steep slopes 
(for example, data sets of with non-functional dependency, where some neighbor points 



have the same abscissa). Also, as it is shown below, these methods are not yet integrated 
into the popular scientific visualization and visual analytics software. 

4.3. Coons Patch 
In case the interpolation between 4 control points P1, P2, P3, P4 is known and represented 
as curves c0(s), c1(s), d0(t), d1(t),        ,         c0(0) = d0(0) = P1, c0(1) = d1(0) = P2, 
c1(0) = d0(1) = P3, c1(1) = d1(1) = P4, the Coons patch [11] can be constructed to build the 
smooth surface between these curves using the following formula: 

 (   )     (   )     (   )   (   ),    (1) 
where I represents some interpolation and B represents bi-interpolation. 
The interpolation method can vary. For example, in case of linear interpolation for I and 
correspondingly bilinear for B, the components of formula (1) yield in the following: 
  (   )  (     )  ( )      ( ), 
  (   )  (     )  ( )      ( ), 
 (   )  (     )(     )  ( )   (     )  ( )  (     )   ( )      ( ). 
The result surface is called bilinearly blended Coons patch. An example is shown in Fig. 3. 
 

 
Fig. 3. Bilinearly blended Coons patch. 

 
Discussed Coons patch exactly meets its boundary curves, but if multiple patches are 
joined, they do not necessarily have the same tangent planes at joint curves leading to the 
creases along those curves. To fix this problem, I can be cubic and B – bicubic interpola-
tion. To find the exact representation of I and B, cubic Hermite splines can be used with 
the weights chosen to match the partial derivatives at the corners. The result is called bicu-
bically blended Coons patch.  
Coons patch is a handy tool to build the surface that potentially can meet the criteria men-
tioned in the Section 2, but the problem is to find the corresponding curves between con-
trol points. 
  



4.4. Building Smooth Surfaces Using Popular Scientific Visuali-
zation Software 

The modern scientific visualization software that is capable of 3D rendering normally pro-
vides functions to build surfaces by given set of points. The most popular tools provide au-
tomatic smoothing as well.  
One of the most popular and powerful systems incorporating huge amount of mathemati-
cal solvers and providing a lot of visualization capabilities is Wolfram Mathematica [12]. 
Among other functions, it allows building surfaces by the discrete set of points. There are 
two interpolation modes available: Hermite (function Interpolation with parameter Meth-
od->"Hermite") and B-spline [13] (function Interpolation with parameter Method-
>"Spline"). The results of both applied to the testing data set from the Section 3 are shown 
in Fig. 4. 
 

  
a       b 

Fig. 4. Surface built by Wolfram Mathematica using Hermite interpolation (a) and B-spline 
interpolation (b). 

 
As it can be seen from the figure, Hermite interpolation (the exact weights are not men-
tioned in the documentation of Mathematica) is better than B-spline interpolation accord-
ing to the criteria mentioned in the Section 2, but still has some false extremes (for exam-
ple, in top-right corner). 
A lot of scientific visualization software utilize VTK library [14] under the hood, for exam-
ple ParaView [15] and its lightweight version for mobile devices KiwiViewer [16]. VTK sup-
ports wide range of rendering techniques and data visualization function. It provides ab-
stract class vtkSubdivisionFilter to generalize approximation and interpolation algorithms 
for building surfaces. Currently, 3 methods are included in the VTK core: vtkLoopSubdivi-
sionFilter that implements smoothing algorithm introduced by C.T. Loop [5], vtkButter-
flySubdivisionFilter that implements so-called butterfly scheme introduces by D. Zorin et 
al. [17] and vtkLinearSubdivisionFilter that implements regular linear interpolation (the 
surface is not smoothed). The rendering results of all these methods applied to the testing 
data set are shown in Fig. 5. 



   
a     b     c 

Fig. 5. Surfaces built by VTK using Loop’s algorithm (a), butterfly algorithm (b) and linear 
interpolation (c). 

 
As seen from Fig. 5, Loop’s method behaves like NURBS: the surface does not contain the 
control points. Thereby, this method does not meet the very first criterion. The butterfly 
filter suites the first criterion, but spawns misplaced extremes and oscillations. The linear 
subdivision filter does not build sleek surface. Consequently, VTK does not provide the de-
sired smoothing function. 
The next popular library for scientific visualization is MathGL [18]. This library is not as 
versatile as VTK concentrating on the charts only, but it is also used in a wide range of ap-
plications requiring high-quality visualization. MathGL generally provides two ways to 
build the surface by the discrete set of points: spline-based interpolation (accessible with 
the refill function) and linear interpolation (accessible with the datagrid function). The 
rendering results are shown in Fig. 6. 
 

 
a     b 

Fig. 6. Surfaces built by MathGL using spline interpolation (a) and linear interpolation (b). 
 
The shape of surface in Fig. 6a is very similar with the one in Fig. 4b. Probably, similar ap-
proaches are used. As in the previously considered software, MathGL either builds the sur-
face that is not perceived sleek, or spawns misplaced extremes and oscillations. 
Taking into account the above mentioned examples it can be stated that the misplaced ex-
tremes of smooth surfaces are still an issue, even in the world-leading visualization soft-
ware solutions. Thereby the problem of creating the algorithm meeting all the criteria from 
the Section 2 is an important task in scientific visualization and visual analytics. 



5. Proposed Solution 
In the previous research we developed an algorithm of building sleek 2D curves without 
misplaced extremes [3]. The curves consist of cubic Bezier segments with the intermediate 
control points calculated using a set of heuristics. Taking this algorithm as a background, 
we propose its 3D generalization.  

Assume having {   }             – a set of input points distributed in as a regular grid 

in 3D space. Lets assume for disambiguation, that this grid is distributed in XOZ and Y is 
vertical axis. Building a smooth surface according to this point set consists of the following 
high-level steps: 

1. For      , build a smooth curve    by the points    ,       . This curve consists 

of m – 1 Bezier segments denoted as            . 

2. For      , build a smooth curve    by the points    ,       . This curve consists 

of n – 1 Bezier segments denoted as            . 

3. For                , build a Coons patch based on curves    ,      ,    , 

      with the constant resolution    . Currently no special heuristics for calculat-

ing R are developed and it is just an external algorithm parameter. 
4. Triangulate the set of points built in step 3. As long as the input point set is assumed 

to be a regular grid, the triangulation is trivial. 
5. Calculate vertex normals using smoothing groups algorithm. 
6. Additionally smooth the field of normals with Gaussian blur function. 

The asymptotic complexity of this algorithm is O(mn), which suites the mentioned criteria 
of efficiency. The result of this algorithm applied to the testing data set is shown in Fig. 7.  
 

 
Fig. 7. Surface built by the proposed algorithm. 

 
As it can be seen from the figure, neither misplaced extremes nor oscillations are present-
ed. The above steps are described in details in the upcoming subsections. The results are 
discussed in the Section 6. 

5.1. Building Sleek Curve with Smoothness Order Zero 
As a first step of building result surface, its 2D slices are considered and each slice is treat-
ed as a piecewise-defined Bezier curve. The key contribution of [3] is the way to calculate 

intermediate control points     
( )

,     
( )

,   
( )

 and   
( )

 to join the neighbor Bezier segments 



     and    without visible crease as shown in Fig. 8a (this figure is extracted from [3] for 
the sake of clarity). To ensure the absence of misplaced extremes and oscillations on the 
result curve, the following conditions should be fulfilled for each segment: 

1. The points     
( )

 and   
( )

 should lay on the tangent to the result curve in the point   .  

2. The lengths of tangent vectors should be equal: |      
( )

|  |    
( )

|. 

3. The intermediate control points   
( )

 and   
( )

 should belong to the areas    and    

respectively depicted in Fig. 8b. 
 

  
a     b 

Fig. 8. Joining of two Bezier curves (a) and areas the intermediate control points belong to 
(b). 

 
The algorithm of meeting the above conditions proposed in [3] is presented in pseudo code 
in Listing 1. It must be noted, that these conditions altogether generally lead to the curve of 
smoothness order 0, so formally speaking this curve is not smooth. The creases on the 
curve appear in the corner cases like equal abscissa of neighbor points or transition from 
one “plateau” (sequence of points with equal ordinate) to another. The algorithms ensuring 
smoothness order 1 and higher spawn misplaced extremes in these cases, but our algo-
rithm does not. Instead, it “breaks” the formal smoothness locally in corner cases. Because 
normally the number of creases is low, the result curve is perceived sleek, which exactly 
matches the desired criteria of quality. 
 

Listing 1. Pseudo code of the sleek curve building algorithm. 

1. Input: array of 2D points   ,      . 

2. Let  ⃗  represent the tangent to the Bezier segment in its starting point. The initial value 
is zero vector. 

3. Let  ⃗  represent the tangent to the Bezier segment in its ending point. The initial value 
is zero vector. 

4. Let  ⃗ represent the vector from the previous point to the current one. 

5. Let  ⃗ represent the vector from the current point to the next one:  ⃗  
     

|     |
. 

6. For each        : 

6.1. Reuse the previously calculated tangent:  ⃗   ⃗ . 
6.2. Reuse the previously calculated vector:  ⃗   ⃗. 

6.3. Calculate the denormalized difference:  ⃗         . 

6.4. Calculate new  ⃗ : 
6.4.1.  If      , then: 

6.4.1.1.  ⃗  
         

|         |
. 

6.4.1.2. If   ⃗    or   ⃗   , then  ⃗   ⃗. 

6.4.1.3. Else if   ⃗    or   ⃗   , then  ⃗   ⃗. 

6.4.1.4. Else  ⃗  
 ⃗  ⃗

| ⃗  ⃗|
. 



6.4.2. Else  ⃗   . 

6.5. Clamp  ⃗  and  ⃗  to the areas    and    respectively: 

6.5.1. If     (  ⃗ 
)      (  ⃗), then   ⃗ 

  . 

6.5.2. If     (  ⃗ 
)      (  ⃗), then   ⃗ 

  . 

6.5.3. If     (  ⃗ 
)      (  ⃗), then   ⃗ 

  . 

6.5.4. If     (  ⃗ 
)      (  ⃗), then   ⃗ 

  . 

6.6. Let    be the flag indicating whether   ⃗ 
  . 

6.7. Let    be the flag indicating whether   ⃗ 
  . 

6.8. Calculate    and    – lengths of the corresponding tangents for the current Bezier 
segment (assuming        ) – algorithm’s parameter): 

6.8.1. If    is true, then     , else    
 

 ⃗⃗⃗

   ⃗⃗ 

. 

6.8.2. If    is true, then     , else    
 

 ⃗⃗⃗

   ⃗⃗ 

. 

6.8.3. If |    ⃗ 
|  |  ⃗|, then: 

6.8.3.1. If   ⃗ 
  , then     , else    

  ⃗⃗

  ⃗⃗ 

. 

6.8.4. If |    ⃗ 
|  |  ⃗|, then: 

6.8.4.1. If   ⃗ 
  , then     , else    

  ⃗⃗

  ⃗⃗ 

. 

6.8.5. If both    and    are false, then: 

6.8.5.1. Let   
  ⃗⃗ 

  ⃗⃗ 

 
  ⃗⃗ 

  ⃗⃗ 

. 

6.8.5.2. If    , then: 

6.8.5.2.1. Let   
 

 
(     

 
 

 ⃗⃗ 

  ⃗⃗ 

     
    

 
 

 ⃗⃗ 

  ⃗⃗ 

   
). 

6.8.5.2.2. If      
 and        

, then: 

6.8.5.2.2.1. If |  |  |  |, then     , else     . 
6.8.6. Create the Bezier segment    with the following control points:   ,        , 

         ,     . 

5.2. Building Coons Patches 
According to the assumption, the input points are distributed in the regular grid. Each cell 
of this grid is an area between 4 neighbor points bounded with 4 corresponding Bezier 
segments obtained in the previous steps. To build the result surface, each cell is treated as 
a Coons patch and the intermediate points inside this cell are calculated according to the 
formula (1) with the resolution R, which means,      new points are emitted. 
To ensure better shading of the result surface, its wireframe should be as close to the regu-
lar grid as possible. However, each cell is bounded by parametric Bezier segments, and the 
result points depend nonlinearly on the parameter. This means, if the parameter changes 
linearly, X and Z coordinates of result points change nonlinearly. To ensure a regular grid, 
the parameter should be changed in a nonlinear way. 
The cubic Bezier segment is calculated as follows: 

   ( )  (   )      (   )   
( )

    (   )  
( )

       , (2) 

where   ,      are the points from the input data set, 

  
( )

,   
( )

 are the intermediate control points calculated according to the algorithm shown 

in Listing 1, 
       . 



Each bounding curve is parallel to either X- or Z-axis being a part of regular grid. This 
means, only the pairs {X, Y} or {Z, Y} are calculated by (2).  
Consider the curve parallel to X-axis. Z-coordinates of its points are all the same and X 
changes according to (2). Lets assume, the parameter t is changed linearly from 0 to 1 with 
the step 1/R. To ensure linear changing of X-coordinate,    should be calculated using the 
new parameter    that should be found by solving the following equation: 
   

   (     
    

)    (    )     
    (    )   

  
( )      (    )  

  
( )          

. (3) 

This equation can be solved by well-known Cardan formula. After this, the points    be-
come equidistant in X-direction. The similar calculations are applied to the curves parallel 
to Z-axis. As a result, the regular wireframe for each Coons patch is ensured. 
The next problem to be solved is the joining of neighbor patches. Using the bilinear blend-
ing in formula (1) results in the surface shown in Fig. 9. The field of normals is calculated 
using trivial smoothing groups algorithm [19]: each vertex normal is an average of normals 
of incident triangles. 
 

  
a       b 

Fig. 9. Surface built using bilinearly blended Coons patches without marks (a) and with the 
visible creases marked by ovals (b). 

 
As it can be seen, the creases are visible disturbing the sleek appearance (for the sake of 
clarity, the most problematic places are marked with ovals in the Fig. 9b). The common 
solution of this problem is using bicubic blending instead of bilinear one.  
The cubic interpolation can be expressed by the following formula [20]: 

 (             )    ( 
 

 
   

 

 
   

 

 
   

 

 
  )    (   

 

 
       

 

 
  )   

    ( 
 

 
   

 

 
  )             (4) 

Bicubic interpolation yields in the following [20]: 
 (   )   

      (5) 
 ( (                 )  (                 )  (                 )  (                 )  ) 

 
The bicubic blending in formula (1) is the based on formulas (4) and (5). The non-trivial 
part is that this kind of blending requires neighbor curves to build the current patch as 
shown in the Fig. 10.  



 
Fig. 10. Bicubically blended Coons patch with the neighbor curve segments that are used in 

bicubic interpolation. 
 

In the corner cases, where some of   ,   ,   ,    do not exist (on the surface’ boundary), 
the non-existing segments are assumed to be equal to   ,   ,   ,    respectively for the sa-
ke of unification. 
The result of bicubically blended Coons patches is shown in the Fig. 11. 
 

 
a       b 

Fig. 11. Surface built using bicubically blended Coons patches without marks (a) and with 
the visible creases marked by ovals (b). 

 
As it can be seen, the quality gets higher, but still is not high enough. The problem is, that 
the initial curves indeed have non-continuous derivative in these places. While they are 
perceived sleek when viewed in 2D, the shading of corresponding 3D surface makes the 
creases remarkable, because it is calculated by non-smooth normals’ field. 
The possible solutions are either to increase the radius of smoothing groups used for calcu-
lating vertex normals, or to perform artificial smoothing of normals’ field. 



5.3. Smoothing the Field of Normals 

We decided to remove the creases by applying the smoothing to the field of normals. This 
approach appears more flexible because enables different smoothing functions. We have 
chosen Gaussian blur filter, because it effectively smooths out the values preserving the 
high influence of the median and thereby not spoiling the surface’ curvature information 
represented by the field of normals. 
We apply the Gaussian blur filter as a convolution like it is traditionally done in image pro-
cessing. The vertex normals are processed componentwise. To build the convolution ker-
nel, the following formula is used: 

 (   )   
 

 

  ((   )  (   ) )
,     (6) 

where r is the blur radius, 

           – indices of kernel items. 
The kernel is not normalized; instead, the normals are renormalized after blurring. 
The radius r is a parameter to be tuned. It affects the strength of blur; therefore it should 
be big enough to remove the creases, but not too big to preserve the curvature information 
of the surface (or the shading gets unnatural because the normal won’t reflect the actual 
surface shape). Obviously this parameter depends on the resolution, because the bigger is 
the resolution, the more vertex normals are on the surface, the bigger should be the kernel 
to cover the areas with the creases. We conducted a lot of experiments and found out, that 
the acceptable balance between smoothness and correct shape shading is achieved when 
the radius is about one fifth of the resolution. So, we propose the following formula: 

  *
 

 
+.      (7) 

For example, for the resolution 17 the kernel radius will be 3. The result rendering after 
smoothing the normals field with Gaussian filter using the mentioned parameters is pre-
sented in Fig. 12. 
 

  
a        b 

Fig. 12. Surface built using bicubically blended Coons patches and Gaussian filtering of the 
normals field without marks (a) and with the ovals marking the places the creases used to 

be in the previous steps (b). 
 

We consider the visual quality of the obtained result high enough. 



6. Results and Discussion 
As demonstrated on the test data set, the proposed method allows building the surfaces 
perceived sleek and having no misplaced extremes. The core of the developed algorithm is 
the method of building sleek 2D curves avoiding misplaced extremes that we proposed 
more than a year ago [3]. Since then, this algorithm was intensively tested in the produc-
tion by visualizing different real-world data within the multiplatform charting library 
NChart3D [21] and scientific visualization system SciVi [22]. The proposed generalization 
of this algorithm to the 3D case is as well integrated into both NChart3D and SciVi. It al-
ready runs in production delivering high-quality results. 
According to this testing we can state that the proposed solution completely suites the cri-
teria mentioned in the Section 2 and is thereby applicable for solving the corresponding 
scientific visualization and visual analytics tasks. 
The proposed algorithm has the following limitation: it assumes, the points of the input set 
are distributed in the regular grid, covering this grid completely without tears. To bypass 
this limitation, some kind of regularization should be applied to the initial data set as a 
preprocessing stage. The regularization can be based on interpolation to fill up the tears in 
the grid. However in the case of unstructured (irregular) grid or a sparse grid the proposed 
method in its current form is hardly usable. 

7. Conclusion 
In the present work we considered the problem of high-quality graphical representation of 
functional dependencies expressed as     (   ). By investigating the well-known soft-
ware capable of 3D surface building and rendering we found out that the misplaced ex-
tremes and oscillations are an issue of almost all modern interpolation techniques in 3D 
case.  
We proposed an approach to build sleek 3D surfaces interpolating the given discrete set of 
points and avoiding misplaced extremes and oscillations. This approach ensures rendering 
results of high visual quality and can be used by solving scientific visualization and visual 
analytics tasks. The developed algorithm was integrated into the software NChart3D and 
SciVi and used in solving real-world visualization tasks in various application domains. 
During its usage in the production it proved its correctness and stability. 
The only limitation is the requirement that the input data should be presented in a form of 
a regular grid. As a future work we plan to investigate the possible ways to bypass this limi-
tation without much computational effort.  
The authors’ implementation of the proposed algorithm written in C++ is available on 
GitHub under terms of MIT license [23]: https://github.com/icosaeder/sleek-surface. 
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