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Abstract 

This paper proposes an accurate, computationally efficient, and spectrum-free 
formulation of the heat diffusion smoothing on 3D shapes, represented as triangle meshes. 
The idea behind our approach is to apply a (r,r)-degree Padé-Chebyshev rational 
approximation to the solution of the heat diffusion equation. The proposed formulation is 
equivalent to solve r sparse, symmetric linear systems, is free of user-defined parameters, and 
is robust to surface discretization. We also discuss a simple criterion to select the time 
parameter that provides the best compromise between approximation accuracy and 
smoothness of the solution. Finally, our experiments on anatomical data show that the 
spectrum-free approach greatly reduces the computational cost and guarantees a higher 
approximation accuracy than previous work. 
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1. Introduction 
In medical applications, the heat kernel 

is central in diffusion filtering and smooth-
ing of images [1-6], 3D shapes [7, 8], and 
anatomical surfaces [9, 10]. However, the 
computational cost for the evaluation of 
the heat kernel is the main bottleneck for 
processing both surfaces and volumetric 
data; in fact, it takes from O(n) to O(n3) 
time on a data set sampled with n points, 
according to the sparsity of the Laplacian 
matrix. This aspect becomes more evident 
for medical data, which are nowadays ac-
quired by PET, MRI systems and whose 
resolution is constantly increasing with the 
improvement of the underlying imaging 
protocols and hardware.  

To overcome the time-consuming com-
putation of the Laplacian spectrum on 
large data sets (Sect. 2), the heat kernel has 
been approximated by prolongating its val-
ues evaluated on a sub-sampling of the in-
put surface [11-13]; applying multi-
resolution decompositions [14] or a ration-
al approximation of the exponential repre-
sentation of the heat kernel [15]; and con-
sidering the contribution of the eigenvec-
tors related to smaller eigenvalues. The 
heat equation has been solved through ex-
plicit [16] or backward [17, 18] Euler meth-
ods, whose solution no more satisfies the 
diffusion problem. Further approaches ap-
ply a Krylov subspace projection [19], 
which becomes computationally expensive 
when the dimension of the Krylov space 
increases, still remaining much lower than 
n.
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(a) (b) 

Figure 1: L-curve and ℓ∞ discrepancy. (a) Optimal parameter and corresponding diffu-

sion smoothing (upper part, right−Padé-Chebyshev approximation of degree r=7) on the 

noisy 3D shapes of the teeth. (b) Error 𝜀∞ = ‖(𝐊𝐭 − 𝐊𝐭
(𝑘)

)𝒆𝒊‖
∞

 (y-axis) between the Padé-

Chebyshev approximation (r:=7) of 𝐊𝐭 and its truncated spectral approximation 𝐊𝐭
(𝑘)

 with k 

eigenpairs (k≤103, x-axis), and different values of t. 

 
This paper proposes an accurate, com-

putationally efficient, and spectrum-free 
evaluation of the diffusive smoothing on 
3D shapes, represented as polygonal mesh-
es. The idea behind our approach (Sect. 3) 
is to apply the (r,r)-degree Padé-Chebyshev 
rational polynomial approximation of the 
exponential map to the solution of the heat 
equation. This spectrum-free formulation 
converts the heat equation to a set of 
sparse, symmetric linear systems and the 
resulting computational scheme is inde-
pendent of the evaluation of the Laplacian 
spectrum, the selection of a specific subset 
of eigenpairs, and multi-resolutive prolon-
gation operators. Our approach has a linear 
computational cost, is free of user-defined 
parameters, and works with sparse, sym-
metric, well-conditioned matrices. Since 
the computation is mainly based on nu-
merical linear algebra, our method can be 
applied to any class of Laplacian weights 
and any data representation (e.g., 3D 
shapes, multi-dimensional data), thus 
overcoming the ambiguous definition of 
multi-resolutive and prolongation opera-
tors on point-sampled or non-manifold 
surfaces. Bypassing the computation of the 
eigenvectors related to small eigenvalues, 
which are necessary to correctly recover 
local features of the input shape or signal, 
the spectrum-free computation is robust 

with respect to data discretization. As a re-
sult, it properly encodes local and global 
features of the input data in the heat diffu-
sion kernel. For any data representation 
and Laplacian weights, the accuracy of the 
heat smoothing computed through the 
Padé-Chebyshev approximation is lower 
than 10-r, where r:=5,7 is the degree of the 
rational polynomial, and can be further re-
duced by slightly increasing r. Finally 
(Sect. 4), our experiments on surfaces and 
volumes representing anatomical data 
show that the spectrum-free approach 
greatly reduces the computational cost 
(from 32 up to 164 times) and guarantee a 
higher approximation accuracy than previ-
ous work. 

2. Previous work 
Let us consider the heat equation 

(𝜕𝑡 + ∆)𝐹(∙, 𝑡) = 0, 𝐹(∙ ,0) = 𝑓, on a closed, 
connected manifold 𝒩 of ℝ3, where 𝑓: 𝒩 →
ℝ defines the initial condition on ℳ. The 
solution to the heat equation (𝜕𝑡 +
∆)𝐹(𝐩, 𝑡) = 0, 𝐹(∙ ,0) = 𝑓, is computed as 
the convolution 𝐹(𝐩, 𝑡): = 𝐾𝑡(𝐩,∙) ⋆ 𝑓 be-
tween the initial condition f and the heat 
kernel  

𝐾𝑡(𝐩, 𝐪) ≔ ∑ exp(−𝜆𝑛𝑡)𝜙𝑛(𝐩)𝜙𝑛(𝐪) ∞
𝑛=0 . 

Here, {(𝜆𝑛, 𝜙𝑛)}𝑛=0
+∞  is the Laplacian eigen-

system ∆𝜙𝑛 = 𝜆𝑛𝜙𝑛, 𝜆𝑛 ≤ 𝜆𝑛+1. 
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Figure 2: (a) Input and (b) noisy data set. Diffusion smoothing of (b) computed with (c) the 
Padé-Chebyshev approximation of degree r=7 and (d) the truncated approximation with k 

Laplacian eigenparis. A low number of eigenpairs oversmooth the shape details; increasing k 

reconstructs the surface noise. The ℓ∞ error between (a) and the smooth approximation of (b) 

is lower than 1% for (c) the Padé-Chebyshev method and (d) varies from 12% (k=100) up to 
13% (k=1K) for the truncated spectral approximation. 

 
The heat equation is solved through its 

FEM formulation [20] on a discrete surface 
ℳ (e.g., triangle mesh, point set) of 𝒩. In-

dicating with �̃� the Laplacian matrix, which 
discretizes the Laplace-Beltrami operator 
on ℳ, the “power” method applies the 

identity (𝐊𝑡/𝑚)
𝑚

= 𝐊𝑡, where m is chosen 

in such a way that t/m is sufficiently small 
to guarantee that the approximation 

𝐊𝑡/𝑚 ≈ (𝐈 −
𝑡

𝑚
�̃�) is accurate. Here, I is the 

identity matrix. However, the selection of 
m and its effect on the approximation ac-
curacy cannot be estimated a-priori. In [17, 

18], the solution to the heat equation is 
computed through the Euler backward 
method (𝑡�̃� + 𝐈)𝐅𝑘+1(𝑡) = 𝐅𝑘(𝑡), 𝐅0 = 𝑓. 
The resulting functions are over-smoothed 

and converge to a constant map, as k→+∞. 

Krylov subspace projection [19], which re-
places the Laplacian matrix with a full coef-
ficient matrix of smaller size, has computa-
tional and memory bottlenecks when the 
dimension k of the Krylov space increases, 

still remaining much lower than n (e.g., k≈

5K). 
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Figure 3: (a) Input and (b) noisy data set. Diffusion smoothing computed with (c) the 

Padé-Chebyshev approximation and (d) the truncated approximation with k Laplacian 
eigenparis. The truncated spectral approximation does not preserve sharp features of the 

brain structure, which are accurately reconstructed by the Padé-Chebyshev method. 
 
Once the Laplacian matrix has been 

computed, we evaluate its spectrum and 
approximate the heat kernel by considering 
the contribution of the Laplacian eigenvec-
tors related to smaller eigenvalues, which 
are computed in superlinear time [21]. 
Such an approximation is accurate only if 
the exponential filter decays fast (e.g., large 
values of time). Otherwise, a lager number 
of eigenpairs is needed and the resulting 
computational cost varies from O(kn2) to 
O(n3) time, according to the sparsity of the 

Laplacian matrix. Furthermore, the num-
ber of eigenpairs is heuristically selected 
and its effect on the resulting approxima-
tion accuracy cannot be estimated without 
computing the whole spectrum. Finally, we 
can apply multi-resolution prolongation 
operators [13] and numerical schemes 
based on the Padé-Chebyschev polynomial 
[15, 22]. However, previous work has not 
addressed this extension, convergence re-
sults, and the selection of the optimal scale. 

 



 
Figure 4: Heat diffusion smoothing of noisy data with the Padé-Cebyshev and 

truncated spectral approximation. (a) Input data set, represented as a triangle mesh, 
and L-curve of the approximation accuracy (y-axis) versus the solution smoothness (x-axis). 
(b) Data set achieved by adding a Gaussian noise to (a). Diffusion smoothing computed with 
(c) the Padé-Chebyshev approximation of degree r=7 and (d) the truncated approximation 
with k Laplacian eigenparis. A low number of eigenpairs smooths local details; increasing k 

reconstructs the noisy component. The ℓ∞ error between the ground-truth (a) and the 

smooth approximation of (b) is lower than 1% for the Padé-Chebyshev method (c) and varies 
from 12% (k=100) up to 13% (k=1K) for the truncated spectral approximation (d). 

 

3. Discrete heat diffusion 
smoothing 

Let us discretize the input shape as a tri-
angle mesh ℳ, with vertices 𝒫 ≔ {𝐩𝑖}𝑖=1

𝑛 , 
which is the output of a 3D scanning device 
or a segmentation of a MRI acquisition of 

an anatomical structure. Let �̃�: = 𝐁−1𝐋 be 
the Laplacian matrix, where 𝐋 is a symmet-
ric, positive semi-definite matrix and 𝐁 is a 
symmetric and positive definite matrix. On 
triangle meshes, 𝐋 is the Laplacian matrix 
with cotangent weights [23, 24] or associ-
ated to the Gaussian kernel [25], and B is 
the mass matrix of the Voronoi [18] or tri-
angle [26] areas. For any class of weights, 
the Laplacian matrix �̃� is uniquely defined 
by the couple (𝐋, 𝐁) and is associated to the 
generalized eigensystem (X,Λ) such that 

 

 

 
where X and Λ are the eigenvectors’ and 

eigenvalues’ matrices. From the relation 
(1), we get the identities 𝐁−1𝐋 = 𝐗Λ𝐗−𝟏 =
𝐗Λ𝐗⊤𝐁 

 

 
 
Then, the spectral representation of the 

heat kernel is  
 

 
 

For a signal 𝑓: ℳ → ℝ, 𝐟: = (𝑓(𝐩𝑖))
𝑖=1

𝑛
, 

sampled at 𝒫, the solution 𝐅(𝑡) =

𝐊𝑡𝐟, 𝐅(𝑡): = (𝐹(𝐩𝑖, 𝑡))
𝑖=1

𝑛
, to the heat equa-

tion (𝜕𝑡 + �̃�)𝐅(𝑡) = 𝟎, 𝐅(0) = 𝐟, is achieved 
by multiplying the heat kernel matrix 𝐊𝑡 ≔



exp (−𝑡�̃�) with the initial condition 𝐟. Ap-
plying the Padé-Chebyshev approximation 
to the exponential of the Laplacian matrix 
in Eq. (3), we get  

 

 
and the vector 𝐊𝑡𝐟 is the sum of the so-

lutions of r sparse linear systems 
 
 

We briefly recall that the weights (𝛼𝑖)𝑖=1
𝑟  

and nodes (𝜃𝑖)𝑖=1
𝑟  of the Padé-Chebyshev 

approximation (4) are precomputed for 
any polynomial degree [27]. Each vector gi 
is calculated as a minimum norm residual 
solution [28], without pre-factorizing the 
matrices L and B. Algorithm 1 summarizes 
the main steps of the proposed computa-
tion. 
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Figure 5: Robustness of the Padé-Chebyshev approximation of the heat kernel with differ-
ent values of the time parameter and with respect to surface sampling and noise. 

 

 
 
 
 



According to Varga [29], the L2 approx-
imation error between the exponential map 
and its rational polynomial approximation 
𝑐𝑟𝑟(𝑠) = 𝛼0 + ∑ 𝛼𝑖(𝑡𝑠 − 𝜃𝑖)−1𝑟

𝑖=1  is bounded 
by the uniform rational Chebyshev con-
stant 𝜎𝑟𝑟, which is independent of t and 
lower than 10−r. Assuming exact arithme-
tic, the approximation error is bounded as 

 
in particular, selecting the degree r:=7 in 

Eq. (6) provides an error lower than 10−7, 
which is satisfactory for the approximation 
of 𝐊𝑡𝐟 on 3D shapes. Iterative solvers of 
sparse linear systems are generally efficient 
and accurate for the computation of the 
diffusion smoothing; for several values of t, 
a factorization (e.g., LU) of the coefficient 
matrix of the linear systems can be pre-
computed and used for their solution in 
linear time. 

 
Optimal time parameter. Among the 

possible time parameters, we select a value 
that provides a small residual ‖𝐅(𝑡) − 𝐟‖𝐁

2  
and a low value of the penalty term 
|‖𝐅(𝑡)‖𝐁

2 , which controls the smoothness of 
the solution. Rewriting these two functions 
in terms of the Laplacian spectrum as 

 
the residual and penalty terms are in-

creasing and decreasing maps with respect 
to t, respectively. If t tends to zero, then the 
residual becomes null and the smoothness 
term converges to the energy ‖𝐟‖𝐁. If t be-
comes large, then the residual tends to 
|〈𝐟, 𝐱1〉𝐁| and the solution norm converges 

to (‖𝐟‖𝐁 − |〈𝐟, 𝐱1〉𝐁|𝟐)
1

2. Indeed, the plot of 

𝜀(∙) is L-shaped [30] and its corner pro-
vides the optimal regularization parameter, 
which is the best compromise between ap-
proximation accuracy and smoothness 
(Fig. 1a).  

In previous work, the evaluation of the 
L-curve is computationally expensive, as it 
generally involves the evaluation of the La-
placian spectrum and/or the solution of a 
linear system with slowly converging itera-
tive solvers. Through the Padé-Chebyshev 
approximation, we have an efficient way to 
evaluate the map ε(⋅) for several values of t, 
thus precisely estimating the optimal time 
parameter. In fact, the terms in Eq. (7) are 
evaluated by applying the Padé-Chebyshev 
approximation of 𝐊𝑡𝐟 and computing 

‖�̃�(𝑡) − 𝐟‖
𝐁

 and ‖�̃�(𝑡)‖
𝐁

. In this way, we 

avoid the evaluation of the spectral repre-
sentations (7) through the computation of 
the Laplacian spectrum. 

4. Discussion 
We consider the solution 𝐊𝑡𝐞𝑖 to the 

heat diffusion process, whose initial condi-
tion takes value 1 at the anchor point 𝐩𝑖 
and 0 otherwise. For our tests on triangle 
meshes, we have selected the linear FEM 
weights [21, 26]. In this case [15], the dis-
cretization of the ℒ2(ℳ) inner product is 
induced by the matrix B, which is intrinsic 
to the surface ℳ and is adapted to the local 
sampling through the variation of the tri-
angles’ or Voronoi areas. In the paper ex-
amples, the level-sets are associated to iso-
values uniformly sampled in the range of 
the solution to the heat equation, whose 
minimum and maximum are depicted in 
blue and red, respectively. Furthermore, 
the color coding represents the same scale 
of values for multiple shapes. Noisy exam-
ples have been achieved by adding a 20% 
Gaussian noise to the input shapes. 
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Figure 6: Robustness of the Padé-Chebyshev approximation with respect to surface sam-

pling. 
 
Truncated spectral and Padé-Chebyshev 

approximations For the truncated spectral 
approximation  

𝐅𝑘(𝑡) = ∑ exp(−𝜆𝑖𝑡)〈𝐟, 𝐱i〉𝐁𝐱i 
𝑘

𝑖=1
 

of the solution to the heat equation, the 
number k of eigenpairs must be selected by 
the user and the approximation accuracy 
cannot be estimated without extracting the 
whole spectrum. The different accuracy 
(Fig. 1b) of the truncated spectral approxi-
mation and the Padé-Chebyshev method of 
the heat kernel is analyzed by measuring 

the ℓ∞ approximation error (y-axis) be-

tween the spectral representation of the 
heat kernel 𝐊𝑡, computed using a different 
number k (x-axis) of eigenfunctions, and 
the corresponding Padé-Chebyshev ap-
proximation. For small values of t, the par-
tial spectral representation requires a large 

number k of Laplacian eigenvectors to re-
cover local details. For instance, selecting 
1K eigenpairs the approximation error re-
mains higher than 10−2; in fact, local shape 
features encoded by 𝐊𝑡 are recovered for a 
small t using the eigenvectors associated 
with high frequencies, thus requiring the 
computation of a large part of the Laplaci-
an spectrum. For large values of t, increas-
ing k strongly reduces the approximation 
error until it becomes almost constant and 
close to zero. In this case, the behavior of 
the heat kernel is mainly influenced by the 
Laplacian eigenvectors related to the ei-
genvalues of smaller magnitude. Indeed, 
the spectral representation generally re-
quires a high number of eigenpairs without 
achieving an accuracy of the same order of 
the spectrum-free approximation through 
the Padé-Chebyshev method. 

 
 
 



 
Figure 7: Comparison of the accuracy of different approximations of the heat 

kernel on the unitary sphere. ℓ∞ error (y-axis) between the ground-truth diffusion 

smoothing on the cylinder, with a different sampling (x-axis) and scales. For different scales, 
the accuracy of the Padé-Chebyshev method (r=5, orange line) remains almost unchanged 
and higher than the truncated approximation with 100 and 200 eigenpairs (red, blue line), 

the Euler backward (green line) and power (black line) methods. 
 

Table 1: Timings (in seconds) for the evaluation of the heat kernel on 3D shapes with n 
points, approximated with k=500 eigenpairs (Eigs) and the Padé-Chebyshev approximation 

(Cheb.). Column ’×’ indicates the number of times the computational cost is reduced. Tests 
have been performed on a 2.7 GHz Intel Core i7 Processor, with 8 GB memory. 

Teeth Surf. (Fig. 3) Brain (Fig. 5) 
n Eigs Cheb. × n Eigs Cheb. × 

10K 39.01 0.32 122 20K 99.77 0.61 164 

50K 154.13 2.50 62 50K 189.02 2.08 91 

80K 188.21 4.12 46 100K 299.20 4.98 60 

100K 307.03 6.21 49 200K 658.11 11.20 59 

200K 450.21 10.03 45 400K 850.11 18.21 47 

500K 670.31 21.11 32 500K 1001.11 32.11 78 

 
Robustness to noise and sampling. 

Figs. 2, 3, and 4 compare the diffusion 
smoothing of a noisy data set computed 
with the Padé-Chebyshev approximation of 
degree r=7 and the truncated approxima-
tion with k Laplacian eigenparis. A low 
number of eigenpairs does not preserve 
shape details; increasing k reconstructs the 

surface noise. For both examples, the ℓ∞ 

error between (a) and the smooth approx-
imation of (b) is lower than 1% for (c) the 
Padé-Chebyshev method and (d) varies 
from 12% (k=100) up to 13% (k=1K) for the 
truncated spectral approximation. 

On irregularly-sampled and noisy 
shapes (Figs. 5, 6), the spectrum-free com-
putation provides smooth level sets, which 

are well-distributed around the anchor 
point 𝐩𝑖 and remain almost unchanged and 
coherent with respect to the original shape. 
A higher resolution of 𝒫 improves the qual-
ity of the level-sets of the canonical basis 
function, which are always uniformly dis-
tributed around the anchor (black dot). Fi-
nally, an increase of the noise magnitude 
does not affect the shape and distribution 
of the level sets. 

We also compare the accuracy of the 
heat kernel on the unitary sphere and 
computed with (i) the proposed approach; 
(ii) the spectral representation of the heat 
kernel 𝐊𝑡, with k eigenpairs; (iii) the Euler 
backward method; and (iv) the power 
method (Sect. 2). For all the scales (Fig. 7), 



the approximation accuracy of the Padé-
Chebyshev method is higher than the trun-
cated Laplacian spectrum with k 
eigenpairs, k=1,…,103, the Euler backward 
method, and the power method. Reducing 
the scale, the accuracy of the Padé-
Chebyshev remains almost unchanged 
while the other methods are affected by a 

larger discrepancy and tend to have an 
analogous behavior (t=10−4). Finally, the 
Euler backward method generally over-
smooths the solution, which converges to a 

constant map as k→+∞, and the selection 

of m with respect to the shape details is 
guided by heuristic criteria.

 

 
Figure 8: Numerical stability of the Padé-Chebyshev approximation. With refer-

ence to Fig. 4, conditioning number κ2 (y-axis) of the matrices {(𝑡𝐋 + 𝜃𝑖𝐁)}𝑖=𝑞
7 , for different 

time parameters t; the indices of the coefficients {(𝜃𝑖)}𝑖=𝑞
7  are reported on the x-axis. 

 
Numerical stability. According to 

Sect. 3, the scale t influences the condition-
ing number of the coefficient matrices 
(𝑡𝐋 + 𝜃𝑖𝐁), 𝑖 = 1, … , 𝑟, which are generally 
well-conditioned, as also confirmed by our 
experiments (Fig. 8). While previous work 
requires to heuristically tune the number of 
selected eigenpairs to the chosen scale, the 
Padé-Chebyshev approximation has a 
higher approximation accuracy, which is 
independent of the selected scale. Fur-
thermore, those scales close to zero would 
require a larger number of eigenpairs, thus 
resulting in a larger computational cost for 
the truncated spectral approximation.  

Computational cost. Approximating 
the exponential map with a (rational) poly-
nomial of degree r, the evaluation of the 
solution to the heat diffusion equation and 
the evaluation of the heat kernel 𝐾𝑡(∙,∙) at 

(𝐩𝑖 , 𝐩𝑗) is reduced to solve r sparse, sym-

metric, linear systems (c.f., Eq. (5)), whose 

coefficient matrices have the same struc-
ture and sparsity of the adjacency matrix of 
the input triangle mesh. Applying an itera-
tive and sparse linear solver (e.g., Gauss-
Seidel method, conjugate gradient) [28] 
(Ch. 10), the computational cost for the 
evaluation of the heat kernel and the diffu-
sion distance between two points is 
O(rτ(n)), where O(τ(n)) is the computa-
tional cost of the selected solver. Here, the 
function τ(n), which depends on the num-
ber n of shape samples and the sparsity of 
the coefficient matrix, typically varies from 
τ(n)=n to τ(n)=n log n. In fact, O(n log n) is 
the average computational cost of the 
aforementioned iterative solvers of sparse 
linear systems. Timings (Table 1) are also 
reduced from 32 up to 164 times with re-
spect to the approximation based on a fixed 
number of Laplacian eigenpairs. 



5. Conclusions and future 
work 

We have presented an efficient compu-
tation of the diffusion soothing of medical 
data and the selection of the optimal scale, 
which provides the best compromise be-
tween approximation accuracy and 
smoothness of the solution. As future work, 
we foresee a specialization of the spectrum-
free computation and the selection of the 
optimal time parameter for the analysis of 
brain structures and the smoothing of MRI 
images. 
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