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Abstract 
This paper is based on the PhD research work “Supporting the Use of Parametric Design 

in Architecture”. One of the key factors in design and analysis of empirical research in 
parametric computer-aided design in architecture is the comprehensive and justified 
measurement metrics of parametric modelling effectiveness. Introduced studies agree about 
the same thing that some of the parametric design systems are parametric rules and 
strategies. There is an obvious gap between traditional design principles and methods, rules 
of algorithmic modelling. For understanding of this gap there is an algorithm identification 
along with its parametric research, that allows to encrypt ideas in the language of textual and 
visual type of programming. This paper describes the evaluation criteria, methodology and 
application procedures for measuring the effectiveness of parametric modelling and design 
ideation, which was developed as a part of the comparative study (on-going PhD research 
work) titled “Supporting the Use of Parametric Design in Architecture”.  
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INTRODUCTION 
There is a growing tendency in architec-

tural computer-aided design practice and 
education to use parametric design systems 
for implementing design concepts [1]. Par-
ametric rules and strategies constitute the 
core of parametric design systems. They 
are operated through symbolic (scripting) 
or analogue (visual) programming lan-
guages, which are used as the means to ac-
tualise an idea-to-form translation [2]. In 
spite of the fact that the logics of human 
and computer translations do not follow 
the same patterns, the paradigm of apply-
ing the parametric design principles (vari-
ables, arithmetic, data structures and logi-
cal operations) to one’s idea is rather easy 
to understand: you compose a form-
making algorithm – software generates a 
form. It is the implementation of pro-
gramming that is frustrating and causes 

most difficulties for both novice and ad-
vanced users. Recent studies indicate that 
some barriers have significantly decreased 
with the development of such software as 
Grasshopper and Generative Component’s 
Symbolic Diagram, which support visual 
programming [1]. Even with this apparent-
ly more accessible analogue modelling 
method, the accessibility issues of the algo-
rithmic functions and syntax of CAD pro-
gramming languages are far from being re-
solved.  

Many designers find it difficult to inte-
grate algorithmic thinking and program-
ming into design process [3]. Understand-
ing and learning the programing frame-
work syntax rules can be very frustrating to 
novel users [1]. This fact is relatively easy 
to explain. There is a distinct gap between 
traditional design principles and algorith-
mic modelling methods and rules. Most 
architects and architectural students find it 
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problematic to shift from conventional 
freehand drawing and modelling to de-
scribing their ideas through the language of 
algorithms and codes (Pilot study). They 
have to perform the familiar role of trans-
lator of data into form in a different and 
apparently remote or distancing manner. 
Translation of site characteristics, pro-
gramme, and design objectives into form is 
a familiar act. Identifying an algorithm that 
will do this translation retaining the famil-
iar act, whilst enriching it with parametric 
exploration is where the new and the ex-
pert user both find difficulty. 

2. RESEARCH FRAME-
WORK 

The idea of design knowledge-sharing 
and the re-use of the effective solutions as 
a means to overcome programming issues 
and support parametric modelling under-
lines both Design Patterns (DP) and Dy-
namic Knowledge Repository (DKR) ap-
proaches. None of these approaches is a 
research target in itself, but they are a ve-
hicle through which this research is going 
to investigate the impact of each system on 
the design process. The comparative study 
aims to address the following criteria of 
parametric modelling performance, which 
outlines designers’ ability to use generative 
CAD environments: 

 amount of programming difficulties 

(mistakes); 

 explored solution space; 

 re-use of generative logic; 

 learning precedents; 

 programming efficiency; 

 degree of algorithm sophistication; 

 speed of algorithmic modelling. 

3. DESIGNER POPULA-
TION 

The target group of this research refers 
to a rather broad category of people who 

are engaged in parametric computer-aided 
architectural design. This study has identi-
fied a list of criteria for selecting partici-
pants. The following participant selection 
criteria were established:  

 people who are doing architectural 

design;  

 design experience of at least one 

year (to ensure certain fluency and 

confidence in architectural design); 

 interest in learning how to use par-

ametric modelling systems / usage 

parametric modelling systems; 

 openness (flexiblility) towards new 

design methods and ideas; 

 keenness in mastering and experi-

menting with generative CAD tech-

nologies. 

4. SOFTWARE PLAT-
FORM 

Parametric computer-aided design sys-
tems are operated by algorithmic model-
ling methods, which are represented by ei-
ther textual or visual programming lan-
guages. The key difference between those 
methods of representation is a difference of 
level of abstraction [2]. Visual or diagram-
matic (analogue) programming languages 
(Fig. 1) are represented by so-called ‘box-
and-wire’ modelling environments. The ex-
amples of visual programming environ-
ments are: Grasshopper (Rhino), Genera-
tive Components’ (GC) Symbolic Diagram 
and Houdini (Sidefx) 
(http://www.grasshopper3d.com/).  

A recent study, which compares these 
three systems, was conducted by Janssen 
and Chen [4]. The research, based on qual-
itative assessment, explored the cognitive 
stress associated with iterative construct of 
visual dataflow modelling (VDM) environ-
ments. VDM refers to a modelling ap-
proach that uses visual programming lan-
guages to create computer programs 
(which in our case generate geometry). 

http://www.grasshopper3d.com/


Visual programming progresses through 
manipulating graphical elements rather 
than entering text (scripting).  

In order to test the VDM systems an ex-
ercise was conducted: each platform was 
used to build the same complex parametric 
model. The research states that all three 
programming environments have complet-
ed the modelling task successfully. The ap-
proximate number of nodes used to gener-
ate the model was: 80-90 for Grasshopper, 
90-100 for GC and 70-80 for Houdini. The 

authors indicate that in order to perform 
certain iterations in GC a user is forced to 
follow a reverse-order modelling method, 
which causes additional cognitive stress. 
Grasshopper and Houdini, in contrast to 
GC, both use the forward-order modelling 
method. It is also noted that GC heavily re-
lies on scripted (textual) expressions for 
manipulating such data as: lists, sets or ar-
rays. Thus it is not possible to avoid script-
ing while working with GC [4].

 
 

 
Figure 1. Visual and Textual programming languages (Latest Grasshopper for Rhino 5.0 

(Windows only)) 

There are advantages and disadvantages 
in both (textual and visual) types of pro-
gramming languages. The biggest disad-
vantage of scripting is that it has very strict 
syntax rules, which are extremely hard to 
follow [1]. Syntax mistakes, which inevita-
bly occur during the scripting process, can 
discourage the majority of architects who 
are willing to use generative CAD systems. 
CAD scripting, cannot be done intuitively, 
it requires the user to have a comprehen-
sive amount of knowledge and skills in 
programming language rules and syntax. 
The disadvantages of a visual programming 
environment are related to the limitations 
that this ‘box-and-wire’ system inflicts on 
the variety of available functions and com-
ponents. Each ‘box’ contains a script that 
can be a function, an action or a compo-
nent and the amount of ‘boxes’ is limited. 
Nevertheless, these limitations can be 
overcome when combined with textual 
programming capabilities, through adding 
a script ‘box’, for example [5]. Recent re-
search in the field of CAD programming 
languages and platforms indicates that us-
ers (especially novices) are more enthusias-

tic and successful in understanding and re-
alising design concepts when they use vis-
ual programming [1].  

With visual programming environments 
one can expect to have tangible design out-
comes after a short series of practical tuto-
rials, even from people who are new to 
parametric CAD technology. That is why it 
was decided that both Design Patterns and 
Dynamic Knowledge Repository approach-
es will be tested on the Grasshopper (visual 
programming plugin for Rhinoceros) soft-
ware platform. Grasshopper ‘box-and-wire’ 
environment is user friendly and can be 
explored and operated intuitively.  Both 
Rhinoceros and Grasshopper are available 
in Victoria University of Wellington com-
puter labs.  

5. CASE STUDY FRAME-
WORK 

The design scope and constraints of the 
case studies were developed according to 
the two main strategies. The first strategy 
is to keep the design tasks simple but open 
to various interpretations, thus ensuring an 
easily controlled, short-term experimental 



framework, and fast and efficient analysis 
of the outcome results. This strategy also 
gives an opportunity to test the identified 
parametric modelling criteria, such as the 
amount of programming difficulties, ex-
plored solution space, CAD programming 
efficiency, degree of algorithm sophistica-
tion, speed of modelling, etc. The second 
strategy is to use practical exercises which 
allow the potential of parametric design to 
be expressed to its full extent, hence the 
choice of the exercises: “an abstract com-
position” and “a parametric canopy”. 
Though the implementation of parametric 
modelling can, hypothetically, be imple-
mented within the context of almost any 
design scenario, in design studios it is typi-

cally used to create such geometries as par-
ametric surfaces (including canopies and 
building envelopes), algorithmic orna-
ments, urban or landscape planning, etc. 

The first practical exercise will consist of 
designing a simple abstract composition 
(Fig. 2.1). Participants are expected to de-
velop short definitions (modelling algo-
rithms), which will generate intended out-
come geometry. The objective of the first 
exercise is to introduce and get users famil-
iar with practical implementation of para-
metric modelling assisted by DP and DKR 
approaches. It is anticipated that partici-
pants will most likely use, change parame-
ters and modify existing codes to explore 
design alternatives.

 

 
 

Figure  2.1. Examples of simple abstract parametric models 
 
The second exercise will consist of a 

slightly more sophisticated and specific 
task: a parametric canopy system (complex 
parametric surface). In both cases partici-
pants will be asked to describe their design 
ideas prior modelling, in order to track the 
relations between the design concept and 
the resulting model. It is anticipated that 
participants will develop more complex al-

gorithms, functions and geometries, while 
the amount of variations could decrease, 
compared to the first exercise (Fig. 2.2). 

Similar design scope (exercises) was 
used by Celani and Vaz for a comparative 
study of the use of scripting and visual pro-
gramming in computational design [1], as 
well as by Jasses and Chen for their exper-
imental study, which compares three visual 
dataflow modelling (VDM) systems [4]. 

 
 
 
 
 
 



 

 

 
Figure 2.2. Examples of the second exercise sophisticated and specific task (Metaballs 2D, 

3D).

6. RESEARCH METHOD-
OLOGY 

The proposed methodology has been 
drawn from a range of studies, which have 
examined the application of CAD technolo-
gies through case studies of the software in 
use. The criteria related to the fluency and 
novelty of design ideation were inspired by 
the work titled ‘Metrics for measuring idea-
tion effectiveness’ [7]. The experimental 
setup was influenced by the recent [1] and 
relevant research work by Gabriela Celani 
and Carlos Vaz: ‘Cad Scripting and visual 
programming Languages for implementing 
computational design concepts’. The over-
all methodology has drawn from Groat and 
Wang's [8] guidelines for the development 
of experimental studies: a carefully con-
trolled study with at least two groups, ran-
dom selection of participants, no systemat-
ic differences between groups, and with the 
same treatment applied for all groups.   

After careful consideration and compar-
ison between research objectives and the 
relevance of available methods (which deal 
with design process) it is concluded that 
the experimental methodology suits this 

study the best. There are several experi-
mental methods to study and evaluate de-
sign processes such as controlled tests [9], 
protocol studies [10], [11] and case studies 
[12].  Case studies analysis (namely stu-
dents’ design works, which will be pro-
duced during a proposed parametric pro-
gramming workshop) meets all the re-
search requirements and objectives and 
therefore was chosen as the most suitable. 
The data gathering methodology will be 
based on two types of approaches:  

 outcome-based analysis [7]; 

 questionnaire. 

This systematic approach will cover all 
possible angles of information extraction 
from this particular type of ‘parametric de-
sign’ experiment.  

The data, namely values for each identi-
fied parametric modelling criteria, ob-
tained from questionnaires and outcome-
based analysis will be used to compare how 
each key criteria of parametric modelling 
effectiveness (see Detailed Research Meth-
odology section) vary when designers use 
Design Patterns / Dynamic Knowledge Re-



pository for Parametric Modelling. The 
evaluation criteria data will be interpreted 
as a metrics of numerical values, allowing 
explicit comparison between the approach-
es, thus we will be able to answer the main 
research question, which is to what extent 
and in which particular aspects each ap-
proach improves designers’ ability to use 
parametric modelling environments more 
effectively. 

7. DETAILED CRITERIA 
FOR COMPARING THE 
TWO APPROACHES TO 
SUPPORT OF PARAMET-
RIC DESIGN 

In order to test and evaluate the effec-
tiveness of parametric modelling and a 
change in design ideation, two sets of crite-
ria have been established. The first set of 
criteria tests the effectiveness of algorith-
mic modelling via visual programming. 
The study has to consider the relation be-
tween experimental results and the initial 
level of participants’ skills in parametric 
design. The questionnaire will have a de-
sign background section, where respond-
ents indicate their level of experience and 
knowledge in architectural design and par-
ametric modelling. Each category will be 
divided into five identified levels [13]: 

 non-existent; 

 basic; 

 average; 

 strong; 

 advanced. 

The first set of criteria refers to the main 
research question. Their objective is to 
measure and compare the effectiveness of 
parametric modelling. 

The second set of design ideation crite-
ria refers to rate their satisfaction with the 
design outcome. 

It is estimated at the seven point scale 
[15]: 

 completely dissatisfied (0 point); 

 not satisfied (1-3 point); 

 satisfied (4-6 point); 

 completely satisfied (7 point). 

8. PARAMETRIC MOD-
ELLING CRITERIA  

Method of information extraction 
Amount of programming difficul-

ties (mistakes) / Questionnaire  
Participants will be asked to indicate 

how often they have come across pro-
gramming difficulties (including any kind 
of mistakes), which they could not over-
come. The study takes into account the fact 
that almost every algorithmic modelling 
problem or mistake can be eventually 
found and solved (corrected). That is why 
the cases when users have spent a signifi-
cant amount of time (more than 30 
minutes) on solving a particular program-
ming issue will be counted as a program-
ming difficulty. 

Explored solution space /Algorithm 
and outcome 3D model analysis 

Two criteria: novelty and variety, were 
identified to evaluate the boundaries of ex-
plored solution space. The methods of 
measuring these criteria were inspired by 
research work ‘Metrics for measuring idea-
tion effectiveness’ [7].  

 ‘Novelty’ refers to how unusual or 

unexpected an idea is compared to 

other ideas. In order to measure an 

individual idea’s novelty we have to 

work on a group level. During the 

first stage there is a collection and 

analysis of all of the ideas generated 

by participants. During analysis we 

identify key functions of the algo-

rithms, which generate the form, 

such as: surface/curve subdivision, 

Voronoi pattern, morphing, lofting, 

etc.  After that we will be able to 

count the number of times each so-

lution re-occurs in the pool of ideas. 



The less a characteristic is identi-

fied, the higher is its novelty (Ibid). 

 ‘Variety’ refers to the amount of ex-

plored alternative solutions during 

the idea generation process. This 

criterion applies only to the group 

level. Similarly to the novelty meas-

urement we will analyse generative 

algorithms to track the amount of 

various generative approaches. The 

bigger is the count of various pro-

gramming functions and instruc-

tions used by participants, the high-

er is the variety. 

Generative logic to re-use (useful 
work) / Questionnaire 

This criterion refers to the cases when 
participants have used 
(copy/paste/modify) the algorithm (or part 
of the algorithm). Term ‘re-use’ is only rel-
evant towards the cases when the user was 
aware of the borrowed algorithm’s exist-
ence. It also applies in cases when users 
copy algorithms because they do not want 
to spend time on building some particular 
algorithms from scratch, or if they have 

borrowed because they have forgotten 
some specific instructions, parameters or 
structural rules of the algorithm. 

Learning curve / Questionnaire 
Amount of times when the implementa-

tion of new (never used before) function or 
command occurred.  

CAD programming efficiency / Al-
gorithm and outcome 3D model analysis 

 Check the presence of positive gen-

erative output of the algorithm. This 

means that at least one geometry or 

process should be generated [14]; 

 Check if each instruction or function 

implemented in the algorithm can 

be carried out in principle and check 

if their presence is justified.  The ex-

ample of unjustified instruction is 

shown in the diagram. The high-

lighted set of components does not 

contribute to the positive design 

outcome and leads to a ‘dead end’ 

(Fig. 3). 

 

 
Figure 3. Example of the ‘dead end’ instruction of the generative algorithm 

 
Degree of algorithm sophistication 

/ Algorithm and outcome 3D model analy-
sis 

It is possible to evaluate the level of al-
gorithm sophistication by analysing the 
complexity of used (mathematical or geo-
metrical) functions and components. The 

grading scale will consist of five levels of 
complexity (where ‘one’ will represent such 
simple functions as: create a primitive, 
move, rotate, scale;  and ‘seven’ will refer to 
more complex mathematical functions with 
several variables in the equation (x × sin y 
/ 2) or ‘MetaBall(t)’ function in Grasshop-
per (Fig.4, 5).

 
 



 
Figure 4. Example of the Algorithm composed of rather simple components (functions) 

 

 
Figure 5. Example of the Algorithm composed of more advanced components (functions) 

 
Speed of algorithmic modelling / Algorithm and outcome 3D model analysis 

 In order to evaluate design speed we have to calculate the quantity of generated ideas 

(total amount of algorithms (idea-to-form translations)) modelled during a designated 

amount of time (Fig.6). During the experimental workshop participants will be asked 

to submit each design idea separately [7]. 

 

 
Figure 6. Example of the Outcome geometry with different level of development 

 It is anticipated that some participants will produce a smaller amount of alternative 

designs, but will invest more time in the thorough development of one algorithm 

(model). In order to take this into account, all algorithms will be compared to the level 

of the average algorithm and outcome model development of the group. Algorithms, 

which greatly exceed this level of development, will be counted as two, three, four or 

five ideas – accordingly. The next diagram shows the outcome models generated by 

Algorithm A and B (see the examples of simple and more advanced algorithms).

 



9. DESIGN IDEATION 
CRITERIA 

These criteria refer to the evaluation of a 
feedback process when the approaches in-
fluence the initial idea. The aim is to evalu-
ate the degree to which each approach can 
alter a design outcome (compared to the 
initial design intent). Due to the limitations 
of the programming environment it is ex-
pected that the initial idea will be often 
modified in any case. Nevertheless we will 
be able to compare results against each 
other and see the overall tendency. Regard-
less of the cause of changes in the initial 
idea, this study aims to evaluate whether 
the user is still satisfied with the final de-
sign outcome.  

Change in the design intent / Ques-
tionnaire 

This criterion indicates an ability to 
model an algorithm, which generates a de-
sired intent (direct idea-to form transla-
tion) rather than shift the idea and use 
some available algorithms or change de-
sign strategy according to the possibilities 
and limitations of the tool (parametric 
modelling environment). The participants 
will be asked to describe their initial ideas 
prior to modelling. After the completion of 
a design task, when the outcome model is 
generated, participants will be asked to de-
scribe their design outcome one more time. 

Degree of satisfaction with the de-
sign outcome / Questionnaire 

Participants will be asked to rate their 
degree of satisfaction with the design out-
come on a seven point scale [1]. 

10. PILOT STUDY 
The exploratory ‘Pilot study’ has already 

been undertaken. One group of students 
(counting 19 people) enrolled in the course 
ARCI 211 (Victoria University of Welling-
ton, New Zealand) was briefed with the ba-
sics of generative design and was given a 
series of basic tutorials (Grasshop-
per/Rhino). Each student was provided 
with a small collection of tagged basic algo-
rithmic definitions taken from the code da-
tabase (you can found more details about 
the experiment parameters in [15]). The 

logic of each algorithm was explained to 
students during a lecture.  

It was observed that initially almost all 
students were encouraged by the opportu-
nities of parametric modelling environ-
ments. It was also discovered that motiva-
tion was not strong enough. Programming 
design logic appeared to be too complicat-
ed, and even frightening for the majority of 
students (≈ 70 %). This stopped many of 
them from even trying to use the new par-
ametric modelling tool [15]. The actual 
‘icebreaker’ was a series of short-term per-
sonal talks, where students were shown ex-
amples of how to deal with some particular 
modelling tasks they had in mind. After 
these personal talks students have shown 
progress in development of their own algo-
rithms and implementing existing algo-
rithms. The focus of this stage was to ex-
plore how effectively CAD users are able to 
operate within a generative programming 
environment and to access algorithms, not 
learning software. 

11. CLOSURE  
At this moment the following research 

criteria are set up: software platform, case 
study framework, research methodology, 
detailed criteria for comparing the two ap-
proaches to support of parametric design, 
parametric modelling criteria, design idea-
tion criteria, etc. The next step is the exper-
imental phase of the research. A number of 
studies (test studies, parametric workshops 
with DP and DKR) were carried out in 2013 
and 2014. One of the objectives of the ex-
perimental phase is to empirically test the 
methods to measure established evaluation 
criteria. This research stage will test the 
implementation of proposed evaluation cri-
teria on case studies, measuring the effec-
tiveness of algorithmic modelling and de-
sign ideation patterns.  

This evaluation metrics and methodolo-
gy should be applicable in various studies 
operating within the domains of paramet-
ric computer-aided design. 
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