
Scientific Visualization, 2018, volume 10, number 1, pages 99 - 109, DOI: 10.26583/sv.10.1.08

The effectiveness of parametric modelling and design ide-
ation in architectural engineering

A. A. Glоbа1, O. A. Ulchitskiy2, E. K. Bulatova3

1 Dеakin University,

Melbourne, Australia
ORCID: 0000-0002-4749-5675, globalnaya@gmail.com

2,3 Nosov Magnitogorsk State Technical University,

Magnitogorsk, Russia
2 ORCID: 0000-0003-1065-3251, o.ulchitsky@magtu.ru

3 ORCID: 0000-0003-4010-021X, bulatova_ek@bk.ru

Abstract
This paper is based on the PhD research work “Supporting the Use of Parametric Design

in Architecture”. One of the key factors in design and analysis of empirical research in
parametric computer-aided design in architecture is the comprehensive and justified
measurement metrics of parametric modelling effectiveness. Introduced studies agree about
the same thing that some of the parametric design systems are parametric rules and
strategies. There is an obvious gap between traditional design principles and methods, rules
of algorithmic modelling. For understanding of this gap there is an algorithm identification
along with its parametric research, that allows to encrypt ideas in the language of textual and
visual type of programming. This paper describes the evaluation criteria, methodology and
application procedures for measuring the effectiveness of parametric modelling and design
ideation, which was developed as a part of the comparative study (on-going PhD research
work) titled “Supporting the Use of Parametric Design in Architecture”.

Keywords: Parametric design, Design Patterns, Dynamic Knowledge Repository,

algorithmic modelling, visual and textual programming.

INTRODUCTION
There is a growing tendency in architec-

tural computer-aided design practice and
education to use parametric design systems
for implementing design concepts [1]. Par-
ametric rules and strategies constitute the
core of parametric design systems. They
are operated through symbolic (scripting)
or analogue (visual) programming lan-
guages, which are used as the means to ac-
tualise an idea-to-form translation [2]. In
spite of the fact that the logics of human
and computer translations do not follow
the same patterns, the paradigm of apply-
ing the parametric design principles (vari-
ables, arithmetic, data structures and logi-
cal operations) to one’s idea is rather easy
to understand: you compose a form-
making algorithm – software generates a
form. It is the implementation of pro-
gramming that is frustrating and causes

most difficulties for both novice and ad-
vanced users. Recent studies indicate that
some barriers have significantly decreased
with the development of such software as
Grasshopper and Generative Component’s
Symbolic Diagram, which support visual
programming [1]. Even with this apparent-
ly more accessible analogue modelling
method, the accessibility issues of the algo-
rithmic functions and syntax of CAD pro-
gramming languages are far from being re-
solved.

Many designers find it difficult to inte-
grate algorithmic thinking and program-
ming into design process [3]. Understand-
ing and learning the programing frame-
work syntax rules can be very frustrating to
novel users [1]. This fact is relatively easy
to explain. There is a distinct gap between
traditional design principles and algorith-
mic modelling methods and rules. Most
architects and architectural students find it

https://doi.org/10.26583/sv.10.1.08
mailto:globalnaya@gmail.com
mailto:o.ulchitsky@magtu.ru
mailto:bulatova_ek@bk.ru

problematic to shift from conventional
freehand drawing and modelling to de-
scribing their ideas through the language of
algorithms and codes (Pilot study). They
have to perform the familiar role of trans-
lator of data into form in a different and
apparently remote or distancing manner.
Translation of site characteristics, pro-
gramme, and design objectives into form is
a familiar act. Identifying an algorithm that
will do this translation retaining the famil-
iar act, whilst enriching it with parametric
exploration is where the new and the ex-
pert user both find difficulty.

2. RESEARCH FRAME-
WORK

The idea of design knowledge-sharing
and the re-use of the effective solutions as
a means to overcome programming issues
and support parametric modelling under-
lines both Design Patterns (DP) and Dy-
namic Knowledge Repository (DKR) ap-
proaches. None of these approaches is a
research target in itself, but they are a ve-
hicle through which this research is going
to investigate the impact of each system on
the design process. The comparative study
aims to address the following criteria of
parametric modelling performance, which
outlines designers’ ability to use generative
CAD environments:

 amount of programming difficulties

(mistakes);

 explored solution space;

 re-use of generative logic;

 learning precedents;

 programming efficiency;

 degree of algorithm sophistication;

 speed of algorithmic modelling.

3. DESIGNER POPULA-
TION

The target group of this research refers
to a rather broad category of people who

are engaged in parametric computer-aided
architectural design. This study has identi-
fied a list of criteria for selecting partici-
pants. The following participant selection
criteria were established:

 people who are doing architectural

design;

 design experience of at least one

year (to ensure certain fluency and

confidence in architectural design);

 interest in learning how to use par-

ametric modelling systems / usage

parametric modelling systems;

 openness (flexiblility) towards new

design methods and ideas;

 keenness in mastering and experi-

menting with generative CAD tech-

nologies.

4. SOFTWARE PLAT-
FORM

Parametric computer-aided design sys-
tems are operated by algorithmic model-
ling methods, which are represented by ei-
ther textual or visual programming lan-
guages. The key difference between those
methods of representation is a difference of
level of abstraction [2]. Visual or diagram-
matic (analogue) programming languages
(Fig. 1) are represented by so-called ‘box-
and-wire’ modelling environments. The ex-
amples of visual programming environ-
ments are: Grasshopper (Rhino), Genera-
tive Components’ (GC) Symbolic Diagram
and Houdini (Sidefx)
(http://www.grasshopper3d.com/).

A recent study, which compares these
three systems, was conducted by Janssen
and Chen [4]. The research, based on qual-
itative assessment, explored the cognitive
stress associated with iterative construct of
visual dataflow modelling (VDM) environ-
ments. VDM refers to a modelling ap-
proach that uses visual programming lan-
guages to create computer programs
(which in our case generate geometry).

http://www.grasshopper3d.com/

Visual programming progresses through
manipulating graphical elements rather
than entering text (scripting).

In order to test the VDM systems an ex-
ercise was conducted: each platform was
used to build the same complex parametric
model. The research states that all three
programming environments have complet-
ed the modelling task successfully. The ap-
proximate number of nodes used to gener-
ate the model was: 80-90 for Grasshopper,
90-100 for GC and 70-80 for Houdini. The

authors indicate that in order to perform
certain iterations in GC a user is forced to
follow a reverse-order modelling method,
which causes additional cognitive stress.
Grasshopper and Houdini, in contrast to
GC, both use the forward-order modelling
method. It is also noted that GC heavily re-
lies on scripted (textual) expressions for
manipulating such data as: lists, sets or ar-
rays. Thus it is not possible to avoid script-
ing while working with GC [4].

Figure 1. Visual and Textual programming languages (Latest Grasshopper for Rhino 5.0

(Windows only))

There are advantages and disadvantages
in both (textual and visual) types of pro-
gramming languages. The biggest disad-
vantage of scripting is that it has very strict
syntax rules, which are extremely hard to
follow [1]. Syntax mistakes, which inevita-
bly occur during the scripting process, can
discourage the majority of architects who
are willing to use generative CAD systems.
CAD scripting, cannot be done intuitively,
it requires the user to have a comprehen-
sive amount of knowledge and skills in
programming language rules and syntax.
The disadvantages of a visual programming
environment are related to the limitations
that this ‘box-and-wire’ system inflicts on
the variety of available functions and com-
ponents. Each ‘box’ contains a script that
can be a function, an action or a compo-
nent and the amount of ‘boxes’ is limited.
Nevertheless, these limitations can be
overcome when combined with textual
programming capabilities, through adding
a script ‘box’, for example [5]. Recent re-
search in the field of CAD programming
languages and platforms indicates that us-
ers (especially novices) are more enthusias-

tic and successful in understanding and re-
alising design concepts when they use vis-
ual programming [1].

With visual programming environments
one can expect to have tangible design out-
comes after a short series of practical tuto-
rials, even from people who are new to
parametric CAD technology. That is why it
was decided that both Design Patterns and
Dynamic Knowledge Repository approach-
es will be tested on the Grasshopper (visual
programming plugin for Rhinoceros) soft-
ware platform. Grasshopper ‘box-and-wire’
environment is user friendly and can be
explored and operated intuitively. Both
Rhinoceros and Grasshopper are available
in Victoria University of Wellington com-
puter labs.

5. CASE STUDY FRAME-
WORK

The design scope and constraints of the
case studies were developed according to
the two main strategies. The first strategy
is to keep the design tasks simple but open
to various interpretations, thus ensuring an
easily controlled, short-term experimental

framework, and fast and efficient analysis
of the outcome results. This strategy also
gives an opportunity to test the identified
parametric modelling criteria, such as the
amount of programming difficulties, ex-
plored solution space, CAD programming
efficiency, degree of algorithm sophistica-
tion, speed of modelling, etc. The second
strategy is to use practical exercises which
allow the potential of parametric design to
be expressed to its full extent, hence the
choice of the exercises: “an abstract com-
position” and “a parametric canopy”.
Though the implementation of parametric
modelling can, hypothetically, be imple-
mented within the context of almost any
design scenario, in design studios it is typi-

cally used to create such geometries as par-
ametric surfaces (including canopies and
building envelopes), algorithmic orna-
ments, urban or landscape planning, etc.

The first practical exercise will consist of
designing a simple abstract composition
(Fig. 2.1). Participants are expected to de-
velop short definitions (modelling algo-
rithms), which will generate intended out-
come geometry. The objective of the first
exercise is to introduce and get users famil-
iar with practical implementation of para-
metric modelling assisted by DP and DKR
approaches. It is anticipated that partici-
pants will most likely use, change parame-
ters and modify existing codes to explore
design alternatives.

Figure 2.1. Examples of simple abstract parametric models

The second exercise will consist of a

slightly more sophisticated and specific
task: a parametric canopy system (complex
parametric surface). In both cases partici-
pants will be asked to describe their design
ideas prior modelling, in order to track the
relations between the design concept and
the resulting model. It is anticipated that
participants will develop more complex al-

gorithms, functions and geometries, while
the amount of variations could decrease,
compared to the first exercise (Fig. 2.2).

Similar design scope (exercises) was
used by Celani and Vaz for a comparative
study of the use of scripting and visual pro-
gramming in computational design [1], as
well as by Jasses and Chen for their exper-
imental study, which compares three visual
dataflow modelling (VDM) systems [4].

Figure 2.2. Examples of the second exercise sophisticated and specific task (Metaballs 2D,

3D).

6. RESEARCH METHOD-
OLOGY

The proposed methodology has been
drawn from a range of studies, which have
examined the application of CAD technolo-
gies through case studies of the software in
use. The criteria related to the fluency and
novelty of design ideation were inspired by
the work titled ‘Metrics for measuring idea-
tion effectiveness’ [7]. The experimental
setup was influenced by the recent [1] and
relevant research work by Gabriela Celani
and Carlos Vaz: ‘Cad Scripting and visual
programming Languages for implementing
computational design concepts’. The over-
all methodology has drawn from Groat and
Wang's [8] guidelines for the development
of experimental studies: a carefully con-
trolled study with at least two groups, ran-
dom selection of participants, no systemat-
ic differences between groups, and with the
same treatment applied for all groups.

After careful consideration and compar-
ison between research objectives and the
relevance of available methods (which deal
with design process) it is concluded that
the experimental methodology suits this

study the best. There are several experi-
mental methods to study and evaluate de-
sign processes such as controlled tests [9],
protocol studies [10], [11] and case studies
[12]. Case studies analysis (namely stu-
dents’ design works, which will be pro-
duced during a proposed parametric pro-
gramming workshop) meets all the re-
search requirements and objectives and
therefore was chosen as the most suitable.
The data gathering methodology will be
based on two types of approaches:

 outcome-based analysis [7];

 questionnaire.

This systematic approach will cover all
possible angles of information extraction
from this particular type of ‘parametric de-
sign’ experiment.

The data, namely values for each identi-
fied parametric modelling criteria, ob-
tained from questionnaires and outcome-
based analysis will be used to compare how
each key criteria of parametric modelling
effectiveness (see Detailed Research Meth-
odology section) vary when designers use
Design Patterns / Dynamic Knowledge Re-

pository for Parametric Modelling. The
evaluation criteria data will be interpreted
as a metrics of numerical values, allowing
explicit comparison between the approach-
es, thus we will be able to answer the main
research question, which is to what extent
and in which particular aspects each ap-
proach improves designers’ ability to use
parametric modelling environments more
effectively.

7. DETAILED CRITERIA
FOR COMPARING THE
TWO APPROACHES TO
SUPPORT OF PARAMET-
RIC DESIGN

In order to test and evaluate the effec-
tiveness of parametric modelling and a
change in design ideation, two sets of crite-
ria have been established. The first set of
criteria tests the effectiveness of algorith-
mic modelling via visual programming.
The study has to consider the relation be-
tween experimental results and the initial
level of participants’ skills in parametric
design. The questionnaire will have a de-
sign background section, where respond-
ents indicate their level of experience and
knowledge in architectural design and par-
ametric modelling. Each category will be
divided into five identified levels [13]:

 non-existent;

 basic;

 average;

 strong;

 advanced.

The first set of criteria refers to the main
research question. Their objective is to
measure and compare the effectiveness of
parametric modelling.

The second set of design ideation crite-
ria refers to rate their satisfaction with the
design outcome.

It is estimated at the seven point scale
[15]:

 completely dissatisfied (0 point);

 not satisfied (1-3 point);

 satisfied (4-6 point);

 completely satisfied (7 point).

8. PARAMETRIC MOD-
ELLING CRITERIA

Method of information extraction
Amount of programming difficul-

ties (mistakes) / Questionnaire
Participants will be asked to indicate

how often they have come across pro-
gramming difficulties (including any kind
of mistakes), which they could not over-
come. The study takes into account the fact
that almost every algorithmic modelling
problem or mistake can be eventually
found and solved (corrected). That is why
the cases when users have spent a signifi-
cant amount of time (more than 30
minutes) on solving a particular program-
ming issue will be counted as a program-
ming difficulty.

Explored solution space /Algorithm
and outcome 3D model analysis

Two criteria: novelty and variety, were
identified to evaluate the boundaries of ex-
plored solution space. The methods of
measuring these criteria were inspired by
research work ‘Metrics for measuring idea-
tion effectiveness’ [7].

 ‘Novelty’ refers to how unusual or

unexpected an idea is compared to

other ideas. In order to measure an

individual idea’s novelty we have to

work on a group level. During the

first stage there is a collection and

analysis of all of the ideas generated

by participants. During analysis we

identify key functions of the algo-

rithms, which generate the form,

such as: surface/curve subdivision,

Voronoi pattern, morphing, lofting,

etc. After that we will be able to

count the number of times each so-

lution re-occurs in the pool of ideas.

The less a characteristic is identi-

fied, the higher is its novelty (Ibid).

 ‘Variety’ refers to the amount of ex-

plored alternative solutions during

the idea generation process. This

criterion applies only to the group

level. Similarly to the novelty meas-

urement we will analyse generative

algorithms to track the amount of

various generative approaches. The

bigger is the count of various pro-

gramming functions and instruc-

tions used by participants, the high-

er is the variety.

Generative logic to re-use (useful
work) / Questionnaire

This criterion refers to the cases when
participants have used
(copy/paste/modify) the algorithm (or part
of the algorithm). Term ‘re-use’ is only rel-
evant towards the cases when the user was
aware of the borrowed algorithm’s exist-
ence. It also applies in cases when users
copy algorithms because they do not want
to spend time on building some particular
algorithms from scratch, or if they have

borrowed because they have forgotten
some specific instructions, parameters or
structural rules of the algorithm.

Learning curve / Questionnaire
Amount of times when the implementa-

tion of new (never used before) function or
command occurred.

CAD programming efficiency / Al-
gorithm and outcome 3D model analysis

 Check the presence of positive gen-

erative output of the algorithm. This

means that at least one geometry or

process should be generated [14];

 Check if each instruction or function

implemented in the algorithm can

be carried out in principle and check

if their presence is justified. The ex-

ample of unjustified instruction is

shown in the diagram. The high-

lighted set of components does not

contribute to the positive design

outcome and leads to a ‘dead end’

(Fig. 3).

Figure 3. Example of the ‘dead end’ instruction of the generative algorithm

Degree of algorithm sophistication

/ Algorithm and outcome 3D model analy-
sis

It is possible to evaluate the level of al-
gorithm sophistication by analysing the
complexity of used (mathematical or geo-
metrical) functions and components. The

grading scale will consist of five levels of
complexity (where ‘one’ will represent such
simple functions as: create a primitive,
move, rotate, scale; and ‘seven’ will refer to
more complex mathematical functions with
several variables in the equation (x × sin y
/ 2) or ‘MetaBall(t)’ function in Grasshop-
per (Fig.4, 5).

Figure 4. Example of the Algorithm composed of rather simple components (functions)

Figure 5. Example of the Algorithm composed of more advanced components (functions)

Speed of algorithmic modelling / Algorithm and outcome 3D model analysis

 In order to evaluate design speed we have to calculate the quantity of generated ideas

(total amount of algorithms (idea-to-form translations)) modelled during a designated

amount of time (Fig.6). During the experimental workshop participants will be asked

to submit each design idea separately [7].

Figure 6. Example of the Outcome geometry with different level of development

 It is anticipated that some participants will produce a smaller amount of alternative

designs, but will invest more time in the thorough development of one algorithm

(model). In order to take this into account, all algorithms will be compared to the level

of the average algorithm and outcome model development of the group. Algorithms,

which greatly exceed this level of development, will be counted as two, three, four or

five ideas – accordingly. The next diagram shows the outcome models generated by

Algorithm A and B (see the examples of simple and more advanced algorithms).

9. DESIGN IDEATION
CRITERIA

These criteria refer to the evaluation of a
feedback process when the approaches in-
fluence the initial idea. The aim is to evalu-
ate the degree to which each approach can
alter a design outcome (compared to the
initial design intent). Due to the limitations
of the programming environment it is ex-
pected that the initial idea will be often
modified in any case. Nevertheless we will
be able to compare results against each
other and see the overall tendency. Regard-
less of the cause of changes in the initial
idea, this study aims to evaluate whether
the user is still satisfied with the final de-
sign outcome.

Change in the design intent / Ques-
tionnaire

This criterion indicates an ability to
model an algorithm, which generates a de-
sired intent (direct idea-to form transla-
tion) rather than shift the idea and use
some available algorithms or change de-
sign strategy according to the possibilities
and limitations of the tool (parametric
modelling environment). The participants
will be asked to describe their initial ideas
prior to modelling. After the completion of
a design task, when the outcome model is
generated, participants will be asked to de-
scribe their design outcome one more time.

Degree of satisfaction with the de-
sign outcome / Questionnaire

Participants will be asked to rate their
degree of satisfaction with the design out-
come on a seven point scale [1].

10. PILOT STUDY
The exploratory ‘Pilot study’ has already

been undertaken. One group of students
(counting 19 people) enrolled in the course
ARCI 211 (Victoria University of Welling-
ton, New Zealand) was briefed with the ba-
sics of generative design and was given a
series of basic tutorials (Grasshop-
per/Rhino). Each student was provided
with a small collection of tagged basic algo-
rithmic definitions taken from the code da-
tabase (you can found more details about
the experiment parameters in [15]). The

logic of each algorithm was explained to
students during a lecture.

It was observed that initially almost all
students were encouraged by the opportu-
nities of parametric modelling environ-
ments. It was also discovered that motiva-
tion was not strong enough. Programming
design logic appeared to be too complicat-
ed, and even frightening for the majority of
students (≈ 70 %). This stopped many of
them from even trying to use the new par-
ametric modelling tool [15]. The actual
‘icebreaker’ was a series of short-term per-
sonal talks, where students were shown ex-
amples of how to deal with some particular
modelling tasks they had in mind. After
these personal talks students have shown
progress in development of their own algo-
rithms and implementing existing algo-
rithms. The focus of this stage was to ex-
plore how effectively CAD users are able to
operate within a generative programming
environment and to access algorithms, not
learning software.

11. CLOSURE
At this moment the following research

criteria are set up: software platform, case
study framework, research methodology,
detailed criteria for comparing the two ap-
proaches to support of parametric design,
parametric modelling criteria, design idea-
tion criteria, etc. The next step is the exper-
imental phase of the research. A number of
studies (test studies, parametric workshops
with DP and DKR) were carried out in 2013
and 2014. One of the objectives of the ex-
perimental phase is to empirically test the
methods to measure established evaluation
criteria. This research stage will test the
implementation of proposed evaluation cri-
teria on case studies, measuring the effec-
tiveness of algorithmic modelling and de-
sign ideation patterns.

This evaluation metrics and methodolo-
gy should be applicable in various studies
operating within the domains of paramet-
ric computer-aided design.

References

1. Celani G., Vaz C. E. V., 2012, “CAD

Scripting and Visual Programming

Languages for Implementing Com-

putational Design Concepts: A

Comparison from a Pedagogical

Point Of View”, International jour-

nal of architectural computing, Vol-

ume 10, Number 1 / March 2012,

Multi Science Publishing, pp. 121-

138

2. Mitchell, W.J., The theoretical

foundation of computer-aided archi-

tectural design,Environment and

Planning B, 1978, 2(2), 127 - 150.

3. Woodbury, R. (2010) Elements of

Parametric Design. Routledge, New

York.

4. Janssen and Chen, 2011, Visual Da-

taflow Modelling; A Comparison Of

Three Systems, CAAD Futures

2011:Designing together, ULg, 2011

5. Leitao, A., Santos, L., Programming

Languages for Generative de-

sign.Visual or Textual, in: Zupan-

cic,T., Juvancic, M.,Verovsek., S.

and Jutraz, A., eds., Respecting

Fragile Places, 29th eCAADe Con-

ference

6. Proceedings, University of Ljublja-

na, Faculty of Architecture (Slove-

nia), Ljubljana, 2011, 549-557.

7. Shah, Jami J.; Smith, Steve M.; Var-

gas-Hernandez, Noe, 2003, Metrics

for measuring ideation effective-

ness, Design Studies, Volume 24 (2)

Elsevier, Mar 1, 2003

8. Groat, Linda N. & David Wang,

2002, Architectural Research Meth-

ods, New York: Wiley

9. Schon, D., 1991, ‘Teaching and

Learning as a Design Transaction’ in

Research in Design Thinking, Delft

Press

10. Christiaans, H and Dorst,K, 1991 ‘An

Empirical Study Into Design Think-

ing’ in Research in Design Thinking,

Delft Press

11. Sobek, D and Ward, 1996,

A‘Principles from Toyota’s Set-

Based Concurrent Engineering Pro-

cess’ in Proceedings of ASME Com-

puters in Engineering Conference,

Irvine, CA

12. Ericsson, K and Simon, H, 1984,

Protocol Analysis—Verbal Reports

as Data MIT Press

13. Hamade R. F., Artail H. A., 2008, “A

study of the influence of technical

attributes of beginner CAD users on

their performance” Computer aided

design 40 (2008) 262 – 272

14. Kozen D., 1991, “The Design and

Analysis of Algorithms” (Mono-

graphs in Computer Science), USA.

15. Globa A.A., Donn M., Ulchitskiy

O.A., 2016, Metrics for measuring

complexity of geometric models,

Scientific Visualization, Volume 8,

Number 5 / Quarter 4, 2016, Na-

tional Research Nuclear University

"MEPhI", pp. 74-82.

