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Abstract 
The approach to visualization of flow parameters in branched systems (for one-dimensional 

case here) is described. It is proposed to consider the all flow parameters as a function of a 
single variable - the distance from the start point of the system. In this case, functions that are 
continuous in the branching points can be represented as a tree-like structure. That gives us a 
convenient way to perceive the whole space-time picture of the flow. 

The proposed approach is applied to the visualization of flow parameters obtained by solving 
the water hammer problem in the branching pipes. The model that describes this flow is given, 
and also the main calculation results are presented. They are visualized both in the form of 
graphs for defining the moments of time, and in dynamic mode (animation).  

  
Keywords: tree-like graphs, data visualization, pipeline systems, water hammer, Godunov 

type scheme. 
 

1. Introduction 
In nature, technological and transporta-

tion structures there are spatial branched 
systems characterized by certain parame-
ters that vary in space as well as in time. 

Typical examples of such systems in na-
ture are circulatory systems of living organ-
isms. A circulatory system has a branching, 
tree-like structure: firstly, large arteries 
branch to capillary vessels, and then the ca-
pillary vessels are embodied in the large ve-
nous vessels. The movement of blood 
through such a system is characterized by 
various parameters - pressure, velocity, flow 
rate, diameter and shape of the cross-sec-
tion of a blood vessel, etc. 

In industry, the most famous examples of 
such objects type are pipeline systems: 
there are trunk pipelines for transporting 
products for hundreds and thousands of kil-
ometers; field pipelines for gathering prod-
uct from production sites into the trunk 
pipelines; process pipelines for transporting 
substances within the plant; heat, water and 

gas networks ensuring population supply. 
All these pipeline systems usually have a 
branched system. The flow in the pipelines 
is characterized by pressure, temperature, 
velocity, composition, content of gas-vapor 
fraction, completeness of cross section iso-
lation, and so on. 

Finally, transport systems and roads are 
another example of branching systems. 
Their main characteristics are traffic inten-
sity and vehicle speed.  

All the examples listed above have one 
common characteristic: their length far ex-
ceeds their transverse dimension. For ex-
ample, for trunk pipelines, the typical diam-
eter of flow (pipe) is about 1 m, and the 
length is about 1000 km.  

Today description of systems with such a 
ratio of spatial dimensions is most effec-
tively carried out within the framework of 
one-dimensional approach by solving one-
dimensional equations, when the parame-
ters describing the state of the system vary 
only in the longitudinal direction. In the 
transverse direction, all the parameters are 
assumed to be unchanged. For example, 
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when something flows in a pipeline, all flow 
parameters in any cross-sectional area are 
assumed to be constant, although in terms 
of multidimensional hydrodynamics the ve-
locity on the axis of the pipeline differs from 
the velocity in the side-wall layer. Such an 
"equalization" by the over cross section 
speed is achieved by averaging. 

Thus, when solving one-dimensional 
equations, one-dimensional distributions of 
profiles of various parameters are obtained 
depending on the distance. Such distribu-
tions are usually visualized in the form of 
one-dimensional graphs that are easily per-
ceived and interpreted in practical imple-
mentations. 

However, if the parameters in the 
branching system are described by one-di-
mensional distributions, then a problem 
arises. It is difficult to perceive numerous 
dependencies of parameters on the spatial 
variable not in one spatial interval, but in 
the whole set of basic and branching ele-
ments.  

In the paper, this problem is studied by 
visualizing flow parameters in a branching 
pipeline system through which a slightly 
compressible liquid is transported under 
isothermal conditions. 

2. The approach to visuali-
zation of data that describes 
spatio-temporal distribu-
tion of parameters in 
branching systems 

To visualize flow parameters in branch-
ing systems, one can use the dependencies 
of various parameters on a single argument 
- distance. This can be done both in the 
"snapshot" mode for one moment of time 
and in the "video" mode for a certain time 
interval. 

The situation when there is a single spa-
tial interval with the parameters to be visu-
alized on is the simplest situation. In this 
case, there is no problem either with the 
construction or with the perception of the 
visualized data: functions of one variable 
are the common data representation. 

However, if there is a branched network, 
for example, such as shown in Fig. 1 (there 

are 23 linear sections in it) then the problem 
arises on how to distribute the parameters 
in the most convenient way. 

 
 

Fig. 1. An example of a branched sys-
tem of 23 linear elements 

 
The simplest and the most obvious way is 

to establish a correspondence between each 
linear section and the graph to illustrate the 
changes of the corresponding parameter 
along this linear section. With this ap-
proach, a set of graphical functions is ob-
tained. These functions can be represented 
either in separate figures or in one figure. 
With a small number of branches, you can 
more or less easily see the distribution of 
parameters throughout the system. How-
ever, with more branching, this seems to be 
increasingly difficult. An example of such a 
representation form for the system shown 
in Fig. 1 is given in Fig. 2a where the de-
pendence of a function f (x) corresponding 
to a certain instant of time is represented in 
each of the linear elements forming the 
branching system. The distance x in this 
graph is measured from the branch point 
(for element 1 - from the beginning of the 
system). In Fig. 2a, color matching was used 
to correlate various dependencies with the 
corresponding element of the branching 
system. It is hard to not acknowledge the 
fact that the perception of the data visual-
ized in Fig. 2a is extremely difficult. 

Another possible way of visualization is 
to use the following method: to display pa-
rameter values directly on the branch 
scheme. This can be done in various ways: 

 - using a color scale on a plane network 
of a branched system; 

- using the color scale on the spatial con-
figuration of the branched system; 



- using 3D graphics on the spatial config-
uration of a branched system. 

The last version of the visualization is 
shown in Fig. 2b. This way of visualization, 
of course, simplifies the perception in com-
parison to to the version shown in Fig. 2a. 

Visualization with reference to the 
branching scheme enables the whole per-
ception of the entire flow pattern, and the 
visual image of various sections with pa-
rameters in them is formed almost effort-
lessly and automatically. However, in this 
3D approach it is more difficult to compare 
the parameters values at different points 
(compared to the 1D graphical dependence 
on one parameter). In addition, if we take 
into account significant variation in the 

length of the system in different directions, 
there will be an inevitable problem of per-
ceiving different scales in three-dimen-
sional visualization. 

In this paper, we propose to solve this 
problem using graphs with a tree-like struc-
ture. As a research object, the branching 
pipeline system for the transportation of a 
slightly compressible liquid is selected for 
consideration. The main parameters char-
acterizing the flow in such system are pres-
sure, speed, flowrate, pipeline diameter, 
temperature and friction coefficient. The 
calculation of the pressure has a particular 
practical importance as it is the pressure ex-
cess of some values that lead to destruction 
of the pipeline.

 

 
 

a) 
 

b) 

 
c) 

Fig. 2. Possible variants of visualizing f(x) parameter distribution at some time moment 
for the branched system (same as in Figure 1): a set of 1D dependencies on the spatial varia-

ble (a), in the form of 3D graphics with reference to the spatial structure of the branching 
system (b) and as a tree-like graph (c). 



2.1. Visualization using tree-
like diagrams 

Tree-like graphs represent a set of 1D de-
pendencies of the corresponding parameter 
on the distance at a certain time moment. In 
this case, one graph shows dependencies for 
all linear sections in a single coordinate sys-
tem, where the inlet of a pipeline system 
corresponds to the origin of the coordinate 
system, and the coordinate itself is the dis-
tance from a particular point to the origin of 
the coordinate system. Thus, for each 
branching system, a tree-like graph is con-
structed, completely corresponding to its 
topology. An example of this type of visuali-
zation is shown in Fig. 2c. This example also 
applies to the system shown in Fig. 1. Differ-
ent colors are used to match some 1D de-
pendence to a specific element of a 
branched system. However, it can be easily 
noticed that this practically does not affect 
the perception: in black and white, the visu-
alization 2c would also remain sufficiently 
informative. 

After comparison of these three visuali-
zation approaches presented in Fig. 2, we 
can conclude that the tree-like graph ap-
proach has the best visibility in combination 
with simplicity. 

It should be noted that this form of rep-
resentation has a certain advantage: in the 
branch points of those functions that are 
continuous, the graphs are branched like a 
tree. Therefore, the visualization of param-
eters occurs in the most natural form: the 
distribution of parameters in the system is 
presented in a form convenient for percep-
tion (dependence of the function on one pa-
rameter) with a reference to all branching 
points. 

As a rule, certain integral characteristics 
of the flow are of interest when processes in 
branched systems are modelled. For exam-
ple, when calculating flows in pipelines, it is 
important to not only know the current 
pressure values but also the maximum pres-
sure across all the sections for all process 
time. It is also important to identify those 
sections where the permissible pressure val-
ues were exceeded. 

So, the tree-like diagram can be supple-
mented by visualization of some integral 
characteristics: 

- on the graph of a tree-like function 
corresponding to a certain time moment, 
can be plotted a chart of the maximum (or 
minimum) values of the corresponding 
parameter at a given point; for pipelines, 
this is usually the dependence on the co-
ordinate of the maximum pressures 
reached in the corresponding time;  

- on the graph of a tree-like function 
corresponding to a certain point in time 
сan be supplemented by a plot of the max-
imum permissible values of the corre-
sponding value; for pipelines, such a 
value is usually set to the maximum al-
lowable pressure values above which the 
operation of the pipeline can cause its de-
struction; 

- on the graph of a tree-like function 
corresponding to a certain time moment, 
dangerous spatial intervals can be 
demonstrated; at these intervals the max-
imum permissible values have already 
been exceeded by this time moment; in 
case of consideration of the pipeline sys-
tem, the places of exceeding the maxi-
mum allowable pressure at a given time 
moment can be highlighted, for example 
by color, directly on the line of the func-
tion. 
In conclusion, it should be particularly 

noted that the presented approach to visu-
alization using tree-like graphs is applicable 
not only to displaying at specified moments 
of time, but also in the form of animated 
films. In this case, in our opinion, the visi-
bility of the proposed approach in the data 
representation increases due to the contin-
uous perception of the entire space-time 
flow pattern. 

In addition, animation visualization can 
be more visual in case of its implementation 
in real-time systems, when all the changes 
are reflected in real or advanced time, for 
example, in the control centers, from which 
the real pipeline systems are controlled. An-
imated visualization is indispensable in an-
alyzing the appearances and development 
of emergencies.  

 



2.2. The software environ-
ment used to visualize flow sim-
ulation results in the pipeline 
system 

To visualize the flow parameters in the 
branched pipeline system, the software tool 
"TOXI+Water Hammer" [1] was used. The 
"TOXI+Water Hammer" software is devel-
oped for calculation of parameters in the 
pipeline systems of arbitrary configuration 
including all standard types of equipment 
necessary for pipeline operation: valves of 
various types, pumps, safety valves of vari-
ous operating principles and parameters, 
check valves, branches, junction of pipes of 
various diameters, vessels. "ТОXI+Water 
Hammer" allows to describe stationary, 

transient and emergency processes during 
the pipeline transportation of stable slightly 
compressible liquids (oil, gasoline, water). 

"TOXI+Water Hammer" does not re-
quire any special hardware - calculations 
with the necessary for practical purposes ac-
curacy can be performed by standard per-
sonal computers. 

To provide a representation of the results 
of fluid flow modeling in branched pipeline 
systems, a special subsystem is developed in 
the "TOXI+Water Hammer" software (Fig. 
3). This subsystem allows to display various 
flow parameters (density, velocity, pres-
sure, flow rate, etc.) at any time moment of 
simulation, or in dynamics, as animated 
movies with varying speed of view.

 

 

Fig. 3. Screen for visualization of modeling results. 

3. Mathematical model of 
the process  

For a one-dimensional unsteady isother-
mal flow the flow of liquid in an elastic de-

formable pipe (in isothermal approxima-
tion) is described by a system of the follow-
ing equations [2-5]: 

continuity equation 
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momentum conservation equation 
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pressure-density relation (equation of 
state) 
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here , p, u — density, pressure and ve-
locity of the liquid averaged over the cross 
section; t —time; x — distance from the be-

ginning of the pipeline; (Re) — friction fac-
tor as a function of the Reynolds number 
Re=Du/ν; А — cross-sectional area of the 
pipeline, D — pipeline diameter, g — gravi-

tational acceleration;  — the sine of the 
slope of the route which is determined by 
the elevation marks of the pipeline  h(х), ν - 
kinematic viscosity; ρ0 — density of liquid at 
pressure p0 and temperature of transporta-
tion (usually p0=105 Pa), с – perturbation 
propagation velocity. 

In this model, the following factors are 
taken into account: 

- non-stationarity of the process; 
- change in the cross-section of the pipe-

line during its deformation; 
- the convective motion of the medium 

(the second terms in the left-hand sides of 
(1) and (2); 

- appearance and circulation of waves 
generated by stopping/starting pumps, 
closing valves (the first term on the right 
side of (2); 

- the presence of friction on the walls of 
the tube (the second term on the right-hand 
side of (2); 

- effect of gravity on the flow during the 
passage of the pipeline route through a ter-
rain with a complex relief (the third term on 
the right-hand side of (2). 

Equations (1) - (3) are supplemented by 
initial and boundary conditions. The inlet 
and outlet pressures of the pipeline are set 
defined as the boundary conditions, these 
pressures correspond to the pressures of 
tanks or pumps located at the inlet and out-
let of the pipeline. As initial data, the pa-
rameters of stationary flow are specified, 
these parameters  can be obtained analyti-
cally from the solution of the system (1) - 
(3). 

When the valve is closed, the boundary 
condition is zero flow rate. 

The system (1) - (3) describes the motion 
in one linear section. In case of a branched 
pipeline system, when individual linear sec-
tions are combined in a certain sequence, 
the system of equations (1) - (2) is recorded 
for each linear section. The boundary condi-
tions at the junctions of two linear sections 
are set in such a way that the fluxes of mass 
and momentum from one section to the 
other one are the same. 

To determine (Re) we use the Cole-
broke-White relation [6], which links the 

friction coefficient  to the Reynolds num-
ber Re and the pipeline characteristics (di-
ameter D and roughness k): 
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where k is the pipeline roughness 
Thus, the system of equations (1) - (4) al-

lows to consider fully real characteristics of 
the equipment operating on the pipeline: 
pipes, pumps, valves, etc.  

To solve the system of equations (1) - (4), 
we used Godunov-type method previously 
described in [3, 7-8]. 

Godunov-type method is applied to sys-
tems of equations written in a divergent 
form. For example, for a system of differen-
tial equations: 
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when its numerical solution is con-
structed its difference analogue is as fol-
lows: 
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here U – vector of unknown quantities 
representing a function of space x and time 

t,  Φ – flux of quantities U, 
n

i
U  –  the dis-

crete analogue of quantities U referred to 
the i-th discret cell of the space (the coordi-
nate of its center is (i+1/2)∙∆x)  at the n-th 

time step (in n∙∆t time moment), 
n

i 2/|1
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discrete analogue of Φ, referred to the 
boundary of the i-th discret cell with the co-

ordinate i∙∆x (right cell boundary), t  и  

x  - discrete steps in time and space. 
    Thus, using (6) and knowing value (
n

i
U ) on the n-th time step and the fluxes of 

this quantity through the boundaries of the 

corresponding cell (
n

i 2/|1
  and 

n
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possible to find the values of U((n+1)∙∆t, 

(i+1/2)∙∆x)) (
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i
U ) on each new n+1-th 

time step. 
    So, in Godunov's approach, the quanti-

ties 
n

i 2/|1
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Riemann`s problem, the problem of the dis-
continuity decay. In this problem at the ini-
tial moment of time, one part of the half-
space is occupied by a medium with param-

eters 
n

i
U , and the other one - with parame-

ters 
n

i 1
U . At subsequent time moments, two 

waves begin to propagate into two half-
spaces: one wave into one half-space. And 
each of these two waves will convert the in-

itial states 
n

i
U  and 

n

i 1
U  into the new states, 

and these new states are "stitched together" 
according to certain parameters (in gas dy-
namics these parameters are pressure and 
velocity). The problem of discontinuity de-
lay can be solved analytically either accu-
rately or approximately. Knowing the pa-
rameters in the «stitching» region one can 

calculate the flows 
n

i 2/|1
  and 

n

i 2/|1
 , i.e. ac-

tually solve (6). 
    It should be noted that Godunov-type 

method today is one of the most widely used 
methods of numerical solution of systems of 
hyperbolic equations due to its high physi-
cal validity.  

4. Problem statement 
When the valves are closed and the 

pumps are stoped or in the process of the 
operating mode change, the product in the 
pipeline slows down or stops completely. In 
its turn, flow slowing-down upstream the 
valves or upstream the pump leads to the 
pressure increase, formation of  increased 
pressure area in the pipeline and the subse-
quent propagation of the increased pressure 

area along the pipeline route. Such propa-
gation of compression waves in the pipe-
lines is called water hammer [9]. 

A water hammer is a significant hazard to 
the integrity of pipelines since a pressure in-
crease can lead to pipe rupture or formation 
of dangerous defects [10]. 

For example, a water hammer was one of 
the causes of the pipeline rupture accident 
at the Sheskharis tank farm (Novorossiysk) 
and oil release to the port water area [11]. 

The danger of a water hammer in pipe-
line systems is worsened by the fact that, as 
a rule, there are one-dimensional flows in 
pipelines. Since there is one-dimensional 
geometry, compression waves propagating 
through the pipeline are attenuated rather 
slowly what leads to formation of poten-
tially dangerous zones over tens of kilome-
ters. 

Water hammer investigations have been 
carried out for dozens of years, beginning 
with the work of N.E.Zhukovsky [9] and 
ending with modern monographs, thesis 
and articles [1, 10, 12, 13, 14]. Typically, wa-
ter hammer is considered in a single pipe-
line. However, real pipeline systems often 
have a more complex topology, including 
branching and looping (branching with a re-
turn to the main pipeline). 

Branching structure of a pipeline can 
have a significant impact on the develop-
ment of the water hammer flow. 

The water hammer problem in a branch-
ing system is extremely important from a 
practical point of view. Indeed, the conse-
quences of a water hammer are the most 
catastrophic in cases of quick valve shut-off. 
Such a quick (in 3-5 seconds) operation of 
the valve and complete cutoff of the flow of-
ten take place while shipping at sea termi-
nals. It is important to cut off the flow 
quickly because the release can pollute the 
aquatic environment what leads to the huge 
environmental damage. Shipment of large 
volumes at high rate is often carried out 
through several pipelines in order to reduce 
the total shipment time. As a result, there 
may be an intense water hammer in a 
branched system.  

Below we consider the problem of gener-
ation and development of a water hammer 
in a pipeline with one and several branches. 



4.1. Single branch pipeline 
Let us consider the following model con-

figuration of the branching pipeline (see 
Figure 4). Distance from the inlet of the 
pipeline (point A) to the branch point (point 
O) is equal to 20 km, the pipe has a diameter 
of 1 m, at point O, the pipeline branches into 
two identical pipes 20 km long and 1/(2)0,5 
m in diameter each, that is, the cross-sec-
tional area of the two branches is equal to 
the cross-sectional area of the main pipe. All 
the pipes have the same roughness of - 0.3 
mm and are laid on flat terrain. A pressure 
at the inlet of the pipe is equal to 1.0 MPa. 
Pressures at the end of each branch pipes 
are equal to 0.3 MPa. Also, there are valves 
which shut off the flow completely within 
0.1 sec 

 

Fig. 4. A model branching pipeline 
system (one branch). 

  
The scenario under which valve №2 cuts 

off the flow is considered.  
 In the calculation, it was assumed 

that the propagation celerity of the wave co-
incides with the speed of sound and is equal 
to 1300 m/s. Density of the transported 
product is equal to 840 kg/m3 at p0=105, 
and kinematic viscosity is equal to 2 10-6 
м2/с. 

 The problem was solved using a grid 
with a spatial step of 400 m. 

4.2. Pipeline system with sev-
eral branches 

To solve the second problem the follow-
ing configuration of a pipeline with three 
branches was considered (see Figure 5). The 
main pipeline consisted of 4 sections (№№ 
1, 3, 5 and 7 in Fig. 5), each with a length of 
10 km. The diameter of this main pipeline 
decreased from section to section: 

- tube in section №1 had a diameter of 1 
m; 

- tube in section №3 had a diameter of 
0,7071 m; 

- tube in section №5 had a diameter of 
0,5 m; 

- tube in section №7 had a diameter of 
0,3536 m; 

In the system under consideration there 
were three branches each with a length of 5 
km (see Figure 5): 

- branch №2 departs from the main pipe-
line at the junction of sections №1 and №3; 
this branch has a diameter of 0.7071 m; 
pressure at the outlet of branch №2 is equal 
to 0.5 MPa; 

- branch №4 departs from the main pipe-
line at the junction of sections №3 and №5; 
this branch has a diameter of 0.5 m; pres-
sure at the outlet of branch №4 is equal to 
0.3 MPa; 

- branch №6 departs from the main pipe-
line at the junction of sections №5 and №7; 
this branch has a diameter of 0.3536 m; 
pressure at the outlet of branch №6 is equal 
to 0.1 MPa; 

 
Fig. 5. A model branching pipeline 

system (three branches). 

 
The pressure at the entrance of the pipe-

line system is equal to 1.0 MPa and the pres-
sure at the end (at the outlet of section №7) 
- 0.1 MPa. 

All pipes are laid on flat country. 
All pipes have the same internal surface 

roughness - 0.03 mm. 
Water is pumped through the pipeline at 

a temperature of 20°C. The initial density 
(at 0.1 MPa) was assumed equal to 1000 
kg/m3 and kinematic viscosity - 8.9 10-6 
m2/s. 

Propagation celerity of the wave equal to 
1480 m/s was used in the calculation.  

The following scenario of a water ham-
mer was considered. With a steady flow in 
the pipeline a gate valve was activated at the 



end of the main pipeline (at the end of sec-
tion №7). The time for complete cut off of 
the flow at the valve shut off was equal to 2 
s. 

 The problem was solved by using a 
grid with a spatial step of 500 m. 

5. Calculation Results 

5.1. Water hammer calcula-
tions in the pipeline with one 

branch: operation of a single 
valve 

 Figure 6 shows the pressure profiles 
at different time moments. In this figure, 
the main pipe corresponds to the section 
from the inlet (point A) to valve №1, the 
branch in this figure corresponds to the sec-
tion from point O to valve №2.

 

 
a) 

 
b) 

Fig. 6. Pressure profiles in the pipeline at time moments of 10, 20 s (a) and 200, 400, 
600, 1400 s (b) after valve №2 shut off. 

 



In Fig. 6a one can clearly see how the 
wave that was formed in the branch (see Fig. 
6a, time moment - 10 s) enters the main 
pipeline (see Fig. 6a), the time moment is 
20 s). 

Figure 6b shows how after the stoppage 
of wave circulation in the system a slow in-
crease in pressure occurs across all sections 
of the pipeline. Most significantly, the pres-
sure rises from point O to valve №2, where 
the flow stops completely. In the other 
branch (from point O to valve №1) and in 
the main pipe (from the beginning to point 
O) the pressure increase is less significant 
(by the relative value). 

Note that the maximum attainable pres-
sures will also be affected by the change in 
the closing delay time of the valves on the 
pipeline branches. Only an accurate and ef-
fective visualization system can enable 
proper analysis of situations affected by var-
ious closing delay time of the pipeline 
branches valves. 

5.2. Water hammer calcula-
tions in a pipeline with several 
branches 

The results of the water hammer calcula-
tions in a pipeline system with several 
branches in the formulation described in 
4.2 are presented below. 

The distributions of pressure, velocity, 
density and mass flow rate for two station-
ary states of the system (before the valve is 
closed at the end of Section №7 and after it 
is closed and a new pumping regime is es-
tablished) are shown in Fig. 7-10. In Fig. 7-
10 it can be seen that after closing the valve 
the flow in section №7 is stopped and the 
pressure is equalized along its entire length. 
At the same time, the mass flow rate in the 
system drops slightly. This is well seen in 
Fig. 10 (a) and (b) where the flow rate of the 
whole system determined by the flow rate in 
section №1 falls from 1630 kg/s to 1610 
kg/s. There is some redistribution of flows 
between the long ten-kilometer sections 
and the short five-kilometer sections. The 
flow rates in sections №3 and №5 decrease 
while the flow rates in sections №2, №4 
and №6 increase (see Figure 10). In accord-

ance with the change in flow rates, such pa-
rameters as velocity and pressure also 
change. The velocity in the short sections in-
creases while in the long sections it de-
creases (see Figure 8). Gradients of pressure 
increase in short sections and decrease in 
long ones (see Figure 7).  

From the presented data, it is also easy to 
see a slight change in the density of the flow 
(see Fig. 9). 

Intermediate states in the system are 
shown in animations presented in Fig. 11 
and 12 where pressures and velocities are 
visualized. 

In these animations, the beginning of the 
valve shut off occurs in 290 s. 

In Fig. 11 one can see that after 6 seconds 
after the closing of the valve, the wave from 
the end of the pipeline approaches the first 
branch from the end (at the end of section 
No. 5). This wave begins to unload in sec-
tions №5 and №6. The pressure on the 
valve at this time moment reaches 1.8 MPa. 
Approximately 9 seconds after the valve 
closes, the wave reaches the end of section 
№6 and begins to unload through this out-
let. By this time, the pressure on the closed 
valve reaches almost 1.9 MPa and at the first 
branch from the end - 0.7 MPa. 

The compressive wave that goes through 
section №5, reaches the second branch 
from the end and begins to unload in sec-
tions №3 and №4 after about 12 seconds af-
ter the valve shut off starts. By this moment, 
the pressure on the closed valve has reached 
1.9 MPa (10 seconds after the valve shut off 
starts) and begins to decrease due to the 
mass outflow from section №7 (the velocity 
for Section №7 is less than zero, see Figure 
12). The pressure at the first branch from 
the end is equal to 1.1 MPa. At the same 
time, due to the larger (compared to section 
№6) diameter of section №5 the pressure 
in section №5 increases substantially up to 
1.17 MPa. 

After 18 seconds after the valve shut off 
starts, the water hammer wave begins to un-
load into sections №1 and №.2. At the same 
time, pressure in Section №3 increases, and 
pressures in sections №5 and №7 decrease. 
A traveling wave is formed in the main pipe-
line. The local maximum pressure in this 
wave is equal to approximately 0.86 MPa. 



This maximum is located at 14 km from the 
beginning of the pipeline at 24 seconds after 
the valve shut off starts. 

The minimum pressure on the valve is 
reached approximately in 31 seconds after 
the valve shut off starts. After that, the out-
flow of mass from section №7 is replaced by 
its inflow in this section from section №3 
(the velocity in section №7 grows higher 
than zero, see Figure 12) and the pressure 
begins to increase in section №7 on the 
closed valve. Also, pressure is rising 
throughout the pipeline. 

The pressure increase on the valve con-
tinues up to 51 s after the start of its closing. 
The pressure on the valve reaches 0.76 MPa. 
Then the pressure on the valve begins to de-
crease. With some time delay (about 3 s), 
the pressure begins to decrease in the whole 
pipeline system. 

After reaching the next minimum pres-
sure (0.12 MPa) on the valve (73 s after the 
start of its closing), another pressure in-
crease begins. 

Such oscillations in the flow are observed 
along the entire length of the pipeline. The 
greatest amplitude of oscillations takes 
place on a closed valve. In the main part 
(sections № 1, 3, 5, 7) the amplitude of the 
oscillations increases with the approach to 
the pipeline beginning. Pressure peaks in 
damped pulsations on the valve are 
achieved after 94 s, 133 s, 153 s, 181 s and 
213 s (after the valve starts to operate). They 
are 0.72 MPa, 0.54 MPa, 0.46 MPa, 0.50 
MPa and 0.49 MPa respectively. Pressure 
minimums are reached after 118 s, 146 s, 
164 s, 200 s and 222 s (after the valve has 
started to operate) and they are 0.31 MPa, 
0.44 MPa, 0.41 MPa, 0.42 MPa and 0.45 
MPa.  

Approximately 240 s after the closure of 
the valve, the pressure and velocity oscilla-
tions in the system are practically damped. 

All these pressure oscillations at the end 
of Section №7 are shown in the animation 
in Fig. 13. 
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Fig. 7. Initial (a) and final (b) pressure distribution in brunched pipeline system. 
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Fig. 8. Initial (a) and final (b) velocity distribution in brunched pipeline system. 
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Fig. 9. Initial (a) and final (b) density distribution in brunched pipeline system. 
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Fig. 10. Initial (a) and final (b) flow rate distribution in brunched pipeline system. 
 

6.  Conclusions 
An approach that allows visualization of 

flow parameters in branched systems is pro-
posed in this paper. Graphs with a tree-like 
structure (one-dimensional dependencies 
of the corresponding parameters on the dis-
tance from the beginning of the system) are 
used.  

Such visualization combines the simplic-
ity of the traditional representation of one 
variable functions and the convenience of 
perceiving these functions for branched sys-
tems. 

The proposed approach to visualization 
is illustrated by examples from the field of 
pipeline transport, for example, the solution 
of the water hammer problem in a branched 
system. 

The results of calculations with visualiza-
tion in the form of a tree-like structure al-
low: 

- to observe the propagation of com-
pression/rarefaction waves along a 
branching system including dynamic vis-
ualization ("video" mode); 

- to observe the unloading of compres-
sion waves at the branching points into 
the pipelines connected at the branching 
point and at the inlet/outlet of the pipe-
line system; 

- to perceive in the optimal way the in-
teraction of circulating waves, including 
compression. 
The last one is especially important since 

it allows to find out quickly the cause of the 
emergence of zones with high pressures ap-
pearance. The proposed visualization (espe-



cially in the dynamic mode of "video") al-
lows to identify interacting waves in real 
time and to understand instantly which 
events and what combination of factors has 
led to the appearance of high-pressure ar-
eas. 

Based on the approach to modeling and 
visualizing flows in the branched pipeline 
systems that was presented above 
"TOXI+Water hammer" software has been 
developed. It helps to simulate flows in 
pipeline systems using a visualization sub-
system based on tree-like graphs. 

Thus, the modeling of flows in pipeline 
systems shows that only when visualization 
of the pattern of wave propagation in pipes 
is available it is possible to perceive the flow 
pattern directly. Besides, this perception is 
the most convenient when tree-like graphs 
are used. 

The work was supported by the Russian 
Science Foundation, grant No. 16-19-00188 
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